126 research outputs found

    Diversity, competition, extinction: the ecophysics of language change

    Get PDF
    As early indicated by Charles Darwin, languages behave and change very much like living species. They display high diversity, differentiate in space and time, emerge and disappear. A large body of literature has explored the role of information exchanges and communicative constraints in groups of agents under selective scenarios. These models have been very helpful in providing a rationale on how complex forms of communication emerge under evolutionary pressures. However, other patterns of large-scale organization can be described using mathematical methods ignoring communicative traits. These approaches consider shorter time scales and have been developed by exploiting both theoretical ecology and statistical physics methods. The models are reviewed here and include extinction, invasion, origination, spatial organization, coexistence and diversity as key concepts and are very simple in their defining rules. Such simplicity is used in order to catch the most fundamental laws of organization and those universal ingredients responsible for qualitative traits. The similarities between observed and predicted patterns indicate that an ecological theory of language is emerging, supporting (on a quantitative basis) its ecological nature, although key differences are also present. Here we critically review some recent advances lying and outline their implications and limitations as well as open problems for future research.Comment: 17 Pages. A review on current models from statistical Physics and Theoretical Ecology applied to study language dynamic

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients

    Full text link
    Nowadays turbochargers play an important role in improving internal combustion engines (ICE) performance. Usually, engine manufacturers use computer codes to predict the behaviour of both engine and turbocharger, the later by means of measured look-up maps. Using look-up maps different problems arise, being one of the most important the difference in heat transfer between the current operating condition and the conditions at which maps were measured. These effects are very important at low to medium turbocharger speeds (typical condition of urban driving conditions) where heat transfer can even be higher than mechanical power. In this work, the different convective heat transfer phenomena inside these kind of machines have been measured and analysed. Besides, general correlations for these flows, based on dimensionless numbers, are fitted and validated in three different turbochargers. The applicability of the model is shown by comparison the main results obtained when the model is used and not, improving up to 20 C the predicted turbine outlet temperature. The main advantages of applying these correlations rely on predicting fluids outlet temperatures (compressor, turbine, oil and coolant). The former is needed to feed accurately ICE model, turbine outlet temperature is important for aftertreatment device modelling while oil and coolant temperatures are important in order to design optimum cooling systems.This work has been partially supported by the Spanish Ministerio de Economa y Competitividad through grant no. TRA2012-36954. The equipment used in this work has been partially supported by FEDER project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)", framed in the operational program of unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain.Serrano Cruz, JR.; Olmeda Gonzålez, PC.; Arnau Martínez, FJ.; Reyes Belmonte, MÁ.; Tartoussi, H. (2015). A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients. Applied Thermal Engineering. 89:587-599. https://doi.org/10.1016/j.applthermaleng.2015.06.053S5875998

    Measurement of the muon signal using the temporal and spectral structure of the signals in surface detectors of the Pierre Auger Observatory

    Get PDF
    Applying different filtering techniques to the temporal distribution of the signals measured with the Auger surface detector array (SD), we separate the electromagnetic and muonic signal components of air-showers. The filters are based on the different characteristics of the muonic and electromagnetic components in individual detectors, the former being composed of peaks above a smooth background due to the lower energy deposition of the latter photons and electrons. The muon signal is derived for showers of 10 EeV primary energy at a core distance of 1 km, with the aim of testing the predictions of hadronic interaction models. We compare the fraction of the muonic signal and the total signal to model predictions for proton and iron primaries in a range of zenith angles from 0 to 60◩ .Fil: Balazs, Kegl. UniversitĂ© Paris Sud; FranciaFil: Aab, A. Universitat Siegen; AlemaniaFil: Allekotte, Ingomar. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro; ArgentinaFil: Almela, Daniel Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Bertou, Xavier Pierre Louis. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro; ArgentinaFil: Dova, Maria Teresa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Figueira, Juan Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Filevich, Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Garcia, Beatriz Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Gomez Berisso, Mariano. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro; ArgentinaFil: GĂłmez Vitale, P. F.. Observatorio Pierre Auger; ArgentinaFil: GonzĂĄlez, N.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Hansen, Patricia Maria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Harari, Diego Dario. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro; ArgentinaFil: Jarne, Cecilia Gisele. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Mariazzi, Analisa Gabriela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Melo, Diego Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Micheletti, Maria Isabel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Mollerac, S.. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro; ArgentinaFil: Pallotta, Juan Vicente. Ministerio de Defensa. Instituto de Investigaciones CientĂ­ficas y TĂ©cnicas para la Defensa; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Platino, Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Quel, Eduardo Jaime. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Unidad de InvestigaciĂłn y Desarrollo EstratĂ©gico para la Defensa. Ministerio de Defensa. Unidad de InvestigaciĂłn y Desarrollo EstratĂ©gico para la Defensa; ArgentinaFil: Ristori, P.. Ministerio de Defensa. Instituto de Investigaciones CientĂ­ficas y TĂ©cnicas para la Defensa; ArgentinaFil: Roulet, Esteban. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo HistĂłrico del Centro AtĂłmico Bariloche e Instituto Balseiro; ArgentinaFil: Rovero, Adrian Carlos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio(i); ArgentinaFil: SĂĄnchez, F.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Sato, R.. Observatorio Pierre Auger; ArgentinaFil: Scarso, C.. Observatorio Pierre Auger; ArgentinaFil: Sciutto, Sergio Juan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Supanitsky, Alberto Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio(i); ArgentinaFil: Tapia, A.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Videla, M.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: Tueros, Matias Jorge. Universidad de Santiago de Compostela; EspañaFil: Wainberg, O.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas. Universidad Nacional de San MartĂ­n. Instituto de TecnologĂ­a en DetecciĂłn y AstropartĂ­culas; ArgentinaFil: The Pierre Auger Collaboration. No especifĂ­ca;33rd International Cosmic Ray ConferenceRĂ­o de JaneiroBrasilInternational Union of Pure and Applied Physic

    Influence of injector technology on injection and combustion development, Part 1: Hydraulic characterization

    Full text link
    An experimental study of two real multi-hole Diesel injectors is performed under current DI Diesel engine operating conditions. The aim of the investigation is to study the influence of injector technology on the flow at the nozzle exit and to analyse its effect on the spray in evaporative conditions and combustion development. The injectors used are two of the most common technologies used nowadays: solenoid and piezoelectric. The nozzles for both injectors are very similar since the objective of the work is the understanding of the influence of the injector technology on spray characteristics for a given nozzle geometry. In the first part of the study, experimental measurements of hydraulic characterization have been analyzed for both systems. Analysis of spray behaviour in evaporative conditions and combustion development will be carried out in the second part of the work. Important differences between both injectors have been observed, especially in their transient opening and closing of the needle, leading to a more efficient air-fuel mixing and combustion processes for the piezoelectric actuated injector. © 2010 Elsevier Ltd.This research has been funded in the frame of the Project "Estudio del flujo en el interior de toberas de inyeccion Diesel", Reference GV/2009/031, from Generalitat Valenciana.Payri Marín, R.; Salvador Rubio, FJ.; Gimeno García, J.; Morena Borja, JDL. (2011). Influence of injector technology on injection and combustion development, Part 1: Hydraulic characterization. Applied Energy. 88(4):1068-1074. https://doi.org/10.1016/j.apenergy.2010.10.012S1068107488

    Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Get PDF
    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and adminis- trative staff in MalargĂŒe. We are very grateful to the following agencies and organiza- tions for financial support: ComisiĂłn Nacional de EnergĂ­a AtĂłmica, FundaciĂłn Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de MalargĂŒe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo Ă  Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP), MinistĂ©rio de CiĂȘncia e Tecnolo- gia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015, TACR TA01010517 and GA UK 119810, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre Na- tional de la Recherche Scientifique (CNRS), Conseil RĂ©gional Ile-de- France, DĂ©partement Physique NuclĂ©aire et Corpusculaire (PNC- IN2P3/CNRS), DĂ©partement Sciences de l’Univers (SDU-INSU/ CNRS), France; Bundesministerium fĂŒr Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministeri- um Baden-WĂŒrttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fĂŒr Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fĂŒr Wissenschaft, Forschung und Kunst, Baden-WĂŒrttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y TecnologĂ­a (CONACYT), Mexico; Ministerie van Ond- erwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wet- enschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds with- in COMPETE - Programa Operacional Factores de Competitividade through Fundação para a CiĂȘncia e a Tecnologia, Portugal; Roma- nian Authority for Scientific Research ANCS, CNDI-UEFISCDI part- nership projects nr.20/2012 and nr.194/2012, project nr.1/ ASPERA2/2012 ERA-NET and PN-II-RU-PD-2011-3-0145-17, Roma- nia; Ministry for Higher Education, Science, and Technology, Slove- nian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e InnovaciĂłn and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE- FR02-04ER41300, DE-FG02-99ER41107, National Science Founda- tion, Grant No. 0450696, The Grainger Foundation USA; NAFO- STED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. We would like to thank the former Michigan Tech students: Nathan Kelley-Hoskins, Kyle Luck and Arin Nelson for their impor- tant contribution to the development of this paper. We would like to thank NOAA for the GOES satellite data that we freely down- loaded from their website. Also, we would like to mention in these acknowledgments Dr. Steve Ackerman and Dr. Tony Schreiner for very valuable conversationsPeer reviewe

    Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    Get PDF
    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.We are very grateful to the following agencies and organizations for financial support,: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La, Provincia de Ailendoza. Municipalidad de Malargile. INDM floldings and Valle Las Lenas, in gratitude for their continuing cooperation over land access. Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e 'Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacdo de Amparo a Pesquisa do Est ado de Rio de Janeiro (FAP HRJ), Fundacdo de Amparo Pesquisa do Estado de Sdo Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (IVICT), Brazil; AVCR AVOZ10100502 and AVOZ10100522, GAAV KJB100100904, AISMT-CR LA08016, LG11044, 1VIEB111003, MSAI0021620859, LA08015, TACR TA01010517 and GA U.K. 119810, Czech Republic; Centre de Calcul I-N2P3/CNRS, Centre National de la -Recherche Scientifique ((1 NRS), Conseil Regional Ile-de-France, f)epartement, Physique Nuclealre et Corpusculaire (I N( Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DITG), Finanzministerium Baden-Wurttemberg, flelmholtz-Gemeinschaft Deutscher Forschungszentren Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerimn fur Wissenschaft, Forschung und Kunst, Baden-WUrttemberg, Germany; Istituto Nazion ale di Fisica Nucleare (INFN), Ministero dell'Istruzione, delhLniversita e della Ricerca (MIUR), Italy: Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onden s Cultuur on NVetenschap Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Rmdamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISETD1 partnership projects nr.20/2012 and nr.194/2012, project nr.1 /ASPERA2/20I2 ERA-NET and PN-IIRU-PD-2011-3-0145-17, Romania; Ministry for Higher Education, Science, and 'Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (( PAN), X unta de Galicia Spain; Science and Technology Facilities Council, United kingdom; Department of Luergy, Contract Nos. DE-ACO2-07(11-111359, DE-FR02-04E1(41300, DE-FG02-99E1(41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/HPLANET, European Particle Physics Latin American Network, European Union 7th Frarneworlc Program. Grant No. IIRSES-2009-GA-246806; and UNESCO.Peer reviewe

    The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    Get PDF
    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60∘60^\circ, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.Comment: 20 pages, 14 figure

    Constraints on the origin of cosmic rays above 101810^{18} eV from large scale anisotropy searches in data of the Pierre Auger Observatory

    Get PDF
    A thorough search for large scale anisotropies in the distribution of arrival directions of cosmic rays detected above 101810^{18} eV at the Pierre Auger Observatory is reported. For the first time, these large scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 101810^{18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.Peer Reviewe

    Results of a self-triggered prototype system for radio-detection of extensive air showers at the Pierre Auger Observatory

    Get PDF
    We describe the experimental setup and the results of RAuger, a small radio-antenna array, consisting of three fully autonomous and self-triggered radio-detection stations, installed close to the center of the Surface Detector (SD) of the Pierre Auger Observatory in Argentina. The setup has been designed for the detection of the electric field strength of air showers initiated by ultra-high energy cosmic rays, without using an auxiliary trigger from another detection system. Installed in December 2006, RAuger was terminated in May 2010 after 65 registered coincidences with the SD. The sky map in local angular coordinates (i.e., zenith and azimuth angles) of these events reveals a strong azimuthal asymmetry which is in agreement with a mechanism dominated by a geomagnetic emission process. The correlation between the electric field and the energy of the primary cosmic ray is presented for the first time, in an energy range covering two orders of magnitude between 0.1 EeV and 10 EeV. It is demonstrated that this setup is relatively more sensitive to inclined showers, with respect to the SD. In addition to these results, which underline the potential of the radio-detection technique, important information about the general behavior of self-triggering radio-detection systems has been obtained. In particular, we will discuss radio self-triggering under varying local electric-field conditions
    • 

    corecore