138 research outputs found

    The continued spectral and temporal evolution of RX J0720.4-3125

    Get PDF
    RX J0720.4-3125 is the most peculiar object among a group of seven isolated X-ray pulsars (the so-called "Magnificent Seven"), since it shows long-term variations of its spectral and temporal properties on time scales of years. This behaviour was explained by different authors either by free precession (with a seven or fourteen years period) or possibly a glitch that occurred around MJD=52866±73days\mathrm{MJD=52866\pm73 days}. We analysed our most recent XMM-Newton and Chandra observations in order to further monitor the behaviour of this neutron star. With the new data sets, the timing behaviour of RX J0720.4-3125 suggests a single (sudden) event (e.g. a glitch) rather than a cyclic pattern as expected by free precession. The spectral parameters changed significantly around the proposed glitch time, but more gradual variations occurred already before the (putative) event. Since MJD≈53000days\mathrm{MJD\approx53000 days} the spectra indicate a very slow cooling by ∼\sim2 eV over 7 years.Comment: seven pages, three figures, three tables; accepted by MNRA

    On the compactness of the isolated neutron star RX J0720.4-3125

    Full text link
    The data from all observations of RX J0720.4-3125 conducted by XMM-Newton EPIC-pn with the same instrumental setup in 2000-2012 were reprocessed to form a homogenous data set of solar barycenter corrected photon arrival times registered from RX J0720.4-3125. A Bayesian method for the search, detection, and estimation of the parameters of an unknown-shaped periodic signal was employed as developed by Gregory & Loredo (1992). A number of complex models (single and double peaked) of light curves from pulsating neutron stars were statistically analyzed. The distribution of phases for the registered photons was calculated by folding the arrival times with the derived spin-period and the resulting distribution of phases approximated with a mixed von Mises distribution, and its parameters were estimated by using the Expected Maximization method. Spin phase-resolved spectra were extracted, and a number of highly magnetized atmosphere models of an INS were used to fit simultaneously, the results were verified via an MCMC approach. The phase-folded light curves in different energy bands with high S/N ratio show a high complexity and variations depending on time and energy. They can be parameterized with a mixed von Mises distribution, i.e. with double-peaked light curve profile showing a dependence of the estimated parameters (mean directions, concentrations, and proportion) upon the energy band, indicating that radiation emerges from at least two emitting areas. The genuine spin-period of the isolated neutron star RX J0720-3125 derived as more likely is twice of that reported in the literature (16.78s instead of 8.39s). The gravitational redshift of RX J0720.4-3125 was determined to z=0.205−0.003+0.006z=0.205_{-0.003}^{+0.006} and the compactness was estimated to (M/MSun)/R(km)=0.105±0.002(M/M_{Sun})/R(km)=0.105 \pm 0.002 .Comment: Comments: 19 pages, 15 figures and 5 tables, Astronomy and Astrophysics accepted. arXiv admin note: text overlap with arXiv:1108.389

    On identifying the neutron star that was born in the supernova that placed 60Fe onto the Earth

    Get PDF
    Recently, 60Fe was found in the Earth crust formed in a nearby recent supernova (SN). If the distance to the SN and mass of the progenitor of that SN was known, then one could constrain SN models. Knowing the positions, proper motions, and distances of dozens of young nearby neutron stars, we can determine their past flight paths and possible kinematic origin. Once the birth place of a neutron star in a SN is found, we would have determined the distance of the SN and the mass of the SN progenitor star.Comment: refereed NPA5 conference proceedings, in pres

    Spectral monitoring of RX J1856.5-3754 with XMM-Newton. Analysis of EPIC-pn data

    Full text link
    Using a large set of XMM-Newton observations we searched for long term spectral and flux variability of the isolated neutron star RX J1856.5-3754 in the time interval from April 2002 to October 2011. This is the brightest and most extensively observed source of a small group of nearby, thermally emitting isolated neutron stars, of which at least one member (RX J0720.4-3125, Hohle et al., 2010) has shown long term variability. A detailed analysis of the data obtained with the EPIC-pn camera in the 0.15-1.2 keV energy range reveals small variations in the temperature derived with a single blackbody fit (of the order of 1% around kT^inf \sim 61 eV). Such variations are correlated with the position of the source on the detector and can be ascribed to an instrumental effect, most likely a spatial dependence of the channel to energy relation. For the sampled instrumental coordinates, we quantify this effect as variations of \sim 4% and \sim 15 eV in the gain slope and offset, respectively. Selecting only a homogeneous subset of observations, with the source imaged at the same detector position, we find no evidence for spectral or flux variations of RX J1856.5-3754 from March 2005 to present-day, with limits of Delta kT^inf < 0.5% and Delta f_X < 3% (0.15-1.2 keV), with 3sigma confidence. A slightly higher temperature (kT^inf \sim 61.5 eV, compared to kT^\inf \sim 61 eV) was instead measured in April 2002. If this difference is not of instrumental origin, it implies a rate of variation \sim -0.15 eV yr^-1 between April 2002 and March 2005. The high-statistics spectrum from the selected observations is best fitted with the sum of two blackbody models, with temperatures kT_h^inf = 62.4_{-0.4}^{+0.6} eV and kT_s^\inf = 38.9_{-2.9}^{+4.9} eV, which account for the flux seen in the optical band. No significant spectral features are detected, with upper limits of 6 eV on their equivalent width.Comment: 11 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    Transit observations at the observatory in Grossschwabhausen: XO-1b and TrES-1

    Get PDF
    We report on observations of transit events of the transiting planets XO-1b and TrES-1 with the AIU Jena telescope in Grossschwabhausen. Based on our IR photometry (in March 2007) and available transit timings (SuperWASP, XO and TLC-project-data) we improved the orbital period of XO-1b (P = 3.941497±\pm0.000006) and TrES-1 (P = 3.0300737±\pm0.000006), respectively. The new ephemeris for the both systems are presented.Comment: 4 pages, 2 figure

    Neutron stars from young nearby associations the origin of RXJ1605.3+3249

    Full text link
    Many neutron stars (NSs) and runaway stars apparently come from the same regions on the sky. This suggests that they share the same birth places, namely associations and clusters of young massive stars. To identify NS birth places, we attempt to and NS-runaway pairs that could be former companions that were disrupted in a supernova (SN). The remains of recent (<few Myr) nearby (< 150 pc) SNe should still be identifiable by observing the emission of rare radioisotopes such as 26Al and 60Fe that can also be used as additional indicators to confirm a possible SN event. We investigated the origin of the isolated NS RXJ1605.3+3249 and found that it was probably born ~100 pc far from Earth 0.45 Myr ago in the extended Corona-Australis or Octans associations, or in Sco OB4 ~1 kpc 3.5 Myr ago. A SN in Octans is supported by the identification of one to two possible former companions the runaway stars HIP 68228 and HIP 89394, as well as the appearance of a feature in the gamma ray emission from 26Al decay at the predicted SN place. Both, the progenitor masses estimated by comparison with theoretical 26Al yields as well as derived from the life time of the progenitor star, are found to be ~11MSun.Comment: accepted for publication in PASA, special volume Astronomy with Radioactivities; 10 pages, 4 figures, 5 table

    Constraints on the Equation-of-State of neutron stars from nearby neutron star observations

    Get PDF
    We try to constrain the Equation-of-State (EoS) of supra-nuclear-density matter in neutron stars (NSs) by observations of nearby NSs. There are seven thermally emitting NSs known from X-ray and optical observations, the so-called Magnificent Seven (M7), which are young (up to few Myrs), nearby (within a few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that we can observe their surfaces. As bright X-ray sources, we can determine their rotational (pulse) period and their period derivative from X-ray timing. From XMM and/or Chandra X-ray spectra, we can determine their temperature. With precise astrometric observations using the Hubble Space Telescope, we can determine their parallax (i.e. distance) and optical flux. From flux, distance, and temperature, one can derive the emitting area - with assumptions about the atmosphere and/or temperature distribution on the surface. This was recently done by us for the two brightest M7 NSs RXJ1856 and RXJ0720. Then, from identifying absorption lines in X-ray spectra, one can also try to determine gravitational redshift. Also, from rotational phase-resolved spectroscopy, we have for the first time determined the compactness (mass/radius) of the M7 NS RBS1223. If also applied to RXJ1856, radius (from luminosity and temperature) and compactness (from X-ray data) will yield the mass and radius - for the first time for an isolated single neutron star. We will present our observations and recent results.Comment: refereed NPA5 conference proceedings, in pres

    Analytic Detection Thresholds for Measurements of Linearly Polarized Intensity Using Rotation Measure Synthesis

    Get PDF
    A fully analytic statistical formalism does not yet exist to describe radio-wavelength measurements of linearly polarized intensity that are produced using rotation measure synthesis. In this work we extend the analytic formalism for standard linear polarization, namely that describing measurements of the quadrature sum of Stokes Q and U intensities, to the rotation measure synthesis environment. We derive the probability density function and expectation value for Faraday-space polarization measurements for both the case where true underlying polarized emission is present within unresolved Faraday components, and for the limiting case where no such emission is present. We then derive relationships to quantify the statistical significance of linear polarization measurements in terms of standard Gaussian statistics. The formalism developed in this work will be useful for setting signal-to-noise ratio detection thresholds for measurements of linear polarization, for the analysis of polarized sources potentially exhibiting multiple Faraday components, and for the development of polarization debiasing schemes.Comment: 14 pages, 6 figures, accepted for publication in MNRA

    The origin of the Guitar pulsar

    Full text link
    Among a sample of 140 OB associations and clusters, we want to identify probable parent associations for the Guitar pulsar (PSR B2224+65) which would then also constrain its age. For this purpose, we are using an Euler-Cauchy technique treating the vertical component of the galactic potential to calculate the trajectories of the pulsar and each association into the past. To include errors we use Monte-Carlo simulations varying the initial parameters within their error intervals. The whole range of possible pulsar radial velocities is taken into account during the simulations. We find that the Guitar pulsar most probably originated from the Cygnus OB3 association ~0.8 Myr ago inferring a current radial velocity of v_r~-30 km/s, consistent with the inclination of its bow shock.Comment: 4 pages, 1 figure, 3 table

    Transit Timing Analysis in the HAT-P-32 system

    Get PDF
    We present the results of 45 transit observations obtained for the transiting exoplanet HAT-P-32b. The transits have been observed using several telescopes mainly throughout the YETI network. In 25 cases, complete transit light curves with a timing precision better than 1.4 1.4\:min have been obtained. These light curves have been used to refine the system properties, namely inclination ii, planet-to-star radius ratio Rp/RsR_\textrm{p}/R_\textrm{s}, and the ratio between the semimajor axis and the stellar radius a/Rsa/R_\textrm{s}. First analyses by Hartman et al. (2011) suggest the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we can exclude TTV amplitudes of more than ∼1.5\sim1.5min.Comment: MNRAS accepted; 13 pages, 10 figure
    • …
    corecore