1,557 research outputs found

    Dehydrotropylium-Co2(CO)6 Ion. Generation, Reactivity and Evaluation of Cation Stability

    Get PDF
    The dehydrotropylium–Co2(CO)6 ion was generated by the action of HBF4 or BF3⋅OEt2 on the corresponding cycloheptadienynol complex, which in turn has been prepared in four steps from a known diacetoxycycloheptenyne complex. The reaction of the cycloheptadienynol complex via the dehydrotropylium–Co2(CO)6 ion with several nucleophiles results in substitution reactions with reactive nucleophiles (N\u3e1) under normal conditions, and a radical dimerisation reaction in the presence of less reactive nucleophiles. Competitive reactions of the cycloheptadienynol complex with an acyclic trienynol complex show no preference for generation of the dehydrotropylium–Co2(CO)6 ion over an acyclic cation. DFT studies on the dehydrotropylium–Co2(CO)6 ion, specifically evaluation of its harmonic oscillator model of aromaticity (HOMA) value (+0.95), its homodesmotic-reaction-based stabilisation energy (≈2.8 kcal mol−1) and its NICS(1) value (−2.9), taken together with the experimental studies suggest that the dehydrotropylium–Co2(CO)6 ion is weakly aromatic

    Precise predictions for WH+jet production at the LHC

    Get PDF
    We present precise predictions for the production of a Higgs boson in association with a hadronic jet and a W boson at hadron colliders. The behaviour of QCD corrections are studied for fiducial cross sections and distributions of the charged gauge boson and jet-related observables. The inclusive process (at least one resolved jet) and the exclusive process (exactly one resolved jet) are contrasted and discussed. The inclusion of QCD corrections up to O(α3s)leads to a clear stabilisation of the predictions and contributes substantially to a reduction of remaining theoretical uncertaintie

    Precise predictions for the angular coefficients in Z-boson production at the LHC

    Get PDF
    The angular distributions of lepton pairs in the Drell-Yan process can provide rich information on the underlying QCD production mechanisms. These dynamics can be parameterised in terms of a set of frame dependent angular coefficients, Ai=0,…,7, which depend on the invariant mass, transverse momentum, and rapidity of the lepton pair. Motivated by recent measurements of these coefficients by ATLAS and CMS, and in particular by the apparent violation of the Lam-Tung relation A0−A2=0, we perform a precision study of the angular coefficients at O(α3s) in perturbative QCD. We make predictions relevant for pp collisions at s√=8 TeV, and perform comparisons with the available ATLAS and CMS data as well as providing predictions for a prospective measurement at LHCb. To expose the violation of the Lam-Tung relationship we propose a new observable ΔLT=1−A2/A0 that is more sensitive to the dynamics in the region where A0 and A2 are both small. We find that the O(α3s) corrections have an important impact on the pT,Z distributions for several of the angular coefficients, and are essential to provide an adequate description of the data. The compatibility of the available ATLAS and CMS data is reassessed by performing a partial χ2 test with respect to the central theoretical prediction which shows that χ2/Ndata is significantly reduced by going from O(α2s) to O(α3s)

    Generation and Reactions of a Benzodehydrotropylium Ion-Co2(CO)6 Complex

    Get PDF
    A series of 7-methylenedehydrobenzo[7]annulen-5-ol hexacarbonyldicobalt complexes were generated by Hosomi-Sakurai reactions of allylsilanes containing o-alkynylarylaldehyde-Co2(CO)6 complexes. One of cyclization products was converted into its corresponding dihydrobenzo[7]annulen-7-ol hexacarbonyldicobalt complex, an immediate precursor to a benzodehydrotropylium-Co2(CO)6. The cation was generated in situ and reacted with four nucleophiles, and its aromatic stabilization determined by computational methods

    Predictions for Z-Boson Production in Association with a b-Jet at O(αs3)

    Full text link
    Precise predictions are provided for the production of a Z boson and a b-jet in hadron-hadron collisions within the framework of perturbative QCD, at O(α3s). To obtain these predictions, we perform the first calculation of a hadronic scattering process involving the direct production of a flavored jet at next-to-next-to-leading-order accuracy in massless QCD and extend techniques to also account for the impact of finite heavy-quark mass effects. The predictions are compared to CMS data obtained in pp collisions at a center-of-mass energy of 8 TeV, which are the most precise data from run I of the LHC for this process, where a good description of the data is achieved. To allow this comparison, we have performed an unfolding of the data, which overcomes the long-standing issue that the experimental and theoretical definitions of jet flavor are incompatible

    VH + jet production in hadron-hadron collisions up to order α3s in perturbative QCD

    Full text link
    We present precise predictions for the hadronic production of an on-shell Higgs boson in association with a leptonically decaying gauge boson and a jet up to order α3s. We include the complete set of NNLO QCD corrections to both charged- and neutral-current Drell-Yan type contributions, as well as the previously known leading heavy quark loop induced contributions which involve a direct Higgs-quark coupling. As an application, we study a range of differential observables in proton-proton collisions at s√ = 13 TeV for both the charged- and neutral-current production modes. For each Higgs production process, we assess the improvement in the theoretical uncertainty for both the exclusive (njet = 1) and inclusive (njet ≥ 1) jet categories. We find that the inclusion of the NNLO corrections to the Drell-Yan type contributions is essential in stabilising the predictions and in reducing the theoretical uncertainty for both inclusive and exclusive jet production for all three modes. This is particularly true in the kinematical regimes associated with low to medium values of the transverse momentum of the produced vector boson and where the differential cross sections are the largest. For the neutral-current process, we find that the heavy quark loop induced contributions have their largest phenomenological impact (an increase in the size of the NNLO corrections, a distortion of the distribution shape and an enlargement of the left over remaining uncertainties) in kinematical regions associated to large values of pT,Z (typically above 150 GeV) where the cross sections are smaller

    Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    Full text link
    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, kTk_T factorization including low-xx resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 77 TeV and at 1313 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10%10\% to 50%50 \% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.Comment: 61 pages, 25 figures, 11 table
    • …
    corecore