159 research outputs found

    The Beam Position System of the CERN Neutrino to Gran Sasso Proton Beam Line

    Get PDF
    The CERN Neutrino to Gran Sasso (CNGS) experiment uses 400GeV protons extracted from the SPS, which travel along 825 meters of beam line before reaching the CNGS target. This beam line is equipped with 23 BPMs capable of measuring both the horizontal and vertical position of the beam. The final BPM is linked to the target station and due to radiation constraints has been designed to work in air. This contribution will give an overview of the BPMs used in the transfer line. It will also provide a detailed explanation of their logarithmic amplifier based acquisition electronics, which consists of an autotriggered sequencer controlling an integrator, the A/D conversion and the Manchester encoded transmission of the digital data to the surface. At the surface the digital data is acquired using the Digital Acquisition Board (DAB) developed by TRIUMF (Canada) for the LHC BPM system. Results from both laboratory measurements and beam measurements during the 2006 CNGS run will also be presented

    An open and parallel multiresolution framework using block-based adaptive grids

    Full text link
    A numerical approach for solving evolutionary partial differential equations in two and three space dimensions on block-based adaptive grids is presented. The numerical discretization is based on high-order, central finite-differences and explicit time integration. Grid refinement and coarsening are triggered by multiresolution analysis, i.e. thresholding of wavelet coefficients, which allow controlling the precision of the adaptive approximation of the solution with respect to uniform grid computations. The implementation of the scheme is fully parallel using MPI with a hybrid data structure. Load balancing relies on space filling curves techniques. Validation tests for 2D advection equations allow to assess the precision and performance of the developed code. Computations of the compressible Navier-Stokes equations for a temporally developing 2D mixing layer illustrate the properties of the code for nonlinear multi-scale problems. The code is open source

    Performance of the new SPS beam position orbit system (MOPOS)

    Get PDF
    The orbit and trajectory measurement system COPOS of the CERN SPS accelerator has been in operation since the construction of the machine in 1976. Over the years the system has been slightly modified in order to follow the evolving demands of the machine, in particular for its operation as a p-pbar collider and, since 1991, for the acceleration of heavy ions. In 1995 the performance of the system was reviewed and the following shortcomings were identified: - lack of turn-by-turn position measurements due to the 1ms integration time of the voltage to frequency converters used for the analogue to digital conversion (to be compared with a revolution time of 23 ms), - ageing effects on the 200 MHz resonating input filters, which had over the years drifted out of tolerance. As a consequence the signal to noise ratio, the linearity and the absolute precision were affected, - the calibration system based on electromechanical relays had become very unreliable, such that frequent calibrations were no longer possible, - a remote diagnostic for the observation of timing signals relative to the beam signals was missing. For the above reasons a large-scale upgrade program was launched, the results of which are described in the following sections

    A Spectral Line Survey of Selected 3 mm Bands Toward Sagittarius B2(N-LMH) Using the NRAO 12 Meter Radio Telescope and the BIMA Array I. The Observational Data

    Full text link
    We have initiated a spectral line survey, at a wavelength of 3 millimeters, toward the hot molecular core Sagittarius B2(N-LMH). This is the first spectral line survey of the Sgr B2(N) region utilizing data from both an interferometer (BIMA Array) and a single-element radio telescope (NRAO 12 meter). In this survey, covering 3.6 GHz in bandwidth, we detected 218 lines (97 identified molecular transitions, 1 recombination line, and 120 unidentified transitions). This yields a spectral line density (lines per 100 MHz) of 6.06, which is much larger than any previous 3 mm line survey. We also present maps from the BIMA Array that indicate that most highly saturated species (3 or more H atoms) are products of grain chemistry or warm gas phase chemistry. Due to the nature of this survey we are able to probe each spectral line on multiple spatial scales, yielding information that could not be obtained by either instrument alone.Comment: 35 pages, 15 figures, to be published in The Astrophysical Journa

    Aperture Restriction Localisation in the LHC Arcs using an RF Mole and the LHC Beam Position Measurement System

    Get PDF
    Ensuring that the two 27km beam pipes of the LHC do not contain aperture restrictions is of utmost importance. Most of the ring is composed of continuous cryostats, so any intervention to remove aperture restrictions when the machine is at its operating temperature of 1.9K will require a substantial amount of time. On warming-up the first cooled sector, several of the sliding contacts which provide electrical continuity for the beam image current between successive sections of the vacuum chamber were found to have buckled into the beam pipe. This led to a search for a technique to verify the integrity of a complete LHC arc (~3km) before any subsequent cool-down. In this paper the successful results from using a polycarbonate ball fitted with a 40MHz RF transmitter are presented. Propulsion of the ball is achieved by sucking filtered air through the entire arc, while its progress is traced every 54m via the LHC beam position measurement system which is auto-triggered by the RF transmitter on passage of the ball. Reflectometry at frequencies in the 4-8 GHz range can cover the gaps between beam position monitors and could therefore be used to localise a ball blocked by an obstacle

    An Analysis of the Atmospheric Propagation of Underground-Explosion-Generated Infrasonic Waves Based on the Equations of Fluid Dynamics: Ground Recordings

    Get PDF
    An investigation on the propagation of underground-explosion-generated infrasonic waves is carried out via numerical simulations of the equations of fluid dynamics. More specifically, the continuity, momentum, and energy conservation equations are solved along with the Herzfeld-Rice equations in order to take into account the effects of vibrational relaxation phenomena. The radiation of acoustic energy by the ground motion caused by underground explosions is initiated by enforcing the equality, at ground level, between the component of the air velocity normal to the Earth\u27s surface and the normal velocity of the ground layer. The velocity of the ground layer is defined semi-empirically as a function of the depth of burial and of the yield. The effects of the depth and of the source energy on the signals recorded in the epicentral zone are first discussed. The tropospheric and stratospheric infrasonic phases traveling at a long-range are then analyzed and explained. Synthesized ground waveforms are finally discussed and compared to those recorded at the I45RU station of the International Monitoring System after the 2013 North-Korean test. Good agreement is found between numerical results and experimental data, which motivates the use of infrasound technologies alongside seismic techniques for the characterization of underground explosions

    Dense gas in nearby galaxies XVI. The nuclear starburst environment in NGC4945

    Get PDF
    A multi-line millimeter-wave study of the nearby starburst galaxy NGC 4945 has been carried out using the Swedish-ESO Submillimeter Telescope (SEST). The study covers the frequency range from 82 GHz to 354 GHz and includes 80 transitions of 19 molecules. 1.3 mm continuum data of the nuclear source are also presented. A large number of molecular species indicate the presence of a prominent high density interstellar gas component characterized by nH2∌105n_{\rm H_2}\sim10^5 cm−3^{-3}. Abundances of molecular species are calculated and compared with abundances observed toward the starburst galaxies NGC 253 and M 82 and galactic sources. Apparent is an `overabundance' of HNC in the nuclear environment of NGC 4945. While the HNC/HCN JJ=1--0 line intensity ratio is ∌\sim0.5, the HNC/HCN abundance ratio is ∌\sim1. While HCN is subthermally excited (Tex∌T_{\rm ex}\sim8 K), CN is even less excited (Tex∌T_{\rm ex}\sim3--4 K), indicating that it arises from a less dense gas component and that its NN=2--1 line can be optically thin even though its NN=1--0 emission is moderately optically thick. Overall, fractional abundances of NGC 4945 suggest that the starburst has reached a stage of evolution that is intermediate between those observed in NGC 253 and M 82. Carbon, nitrogen, oxygen and sulfur isotope ratios are also determined. Within the limits of uncertainty, carbon and oxygen isotope ratios appear to be the same in the nuclear regions of NGC 4945 and NGC 253. High 18^{18}O/17^{17}O, low 16^{16}O/18^{18}O and 14^{14}N/15^{15}N and perhaps also low 32^{32}S/34^{34}S ratios appear to be characteristic properties of a starburst environment in which massive stars have had sufficient time to affect the isotopic composition of the surrounding interstellar medium.Comment: 26 pages, 16 figures, accepted bt A&

    Accurate laboratory rest frequencies of vibrationally excited CO up to varv=3varv = 3 and up to 2 THz

    Full text link
    Astronomical observations of (sub)millimeter wavelength pure rotational emission lines of the second most abundant molecule in the Universe, CO, hold the promise of probing regions of high temperature and density in the innermost parts of circumstellar envelopes. The rotational spectrum of vibrationally excited CO up to \varv = 3 has been measured in the laboratory between 220 and 1940 GHz with relative accuracies up to 5.2×10−95.2 \times 10^{-9}, corresponding to ∌5\sim 5 kHz near 1 THz. The rotational constant BB and the quartic distortion parameter DD have been determined with high accuracy and even the sextic distortion term HH was determined quite well for \varv = 1 while reasonable estimates of HH were obtained for \varv = 2 and 3. The present data set allows for the prediction of accurate rest frequencies of vibrationally excited CO well beyond 2 THz.Comment: Astron. Astrophys, accepted; 5 pages, 2 Figures, 2 Table

    Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch

    Get PDF
    We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1 x 10(14) and 7.7 x 10(14) electrons/cm(3). We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (< 15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels
    • 

    corecore