6 research outputs found

    Application of V2O5/WO3/TiO2 for Resistive-Type SO2 Sensors

    Get PDF
    A study on the application of V2O5/WO3/TiO2 (VWT) as the sensitive material for resistive-type SO2 sensor was conducted, based on the fact that VWT is a well-known catalyst material for good selective catalytic nitrogen oxide reduction with a proven excellent durability in exhaust gases. The sensors fabricated in this study are planar ones with interdigitated electrodes of Au or Pt. The vanadium content of the utilized VWT is 1.5 or 3.0 wt%. The resistance of VWT decreases with an increasing SO2 concentration in the range from 20 ppm to 5,000 ppm. The best sensor response to SO2 occurs at 400 °C using Au electrodes. The sensor response value is independent on the amount of added vanadium but dependent on the electrode materials at 400 °C. These results are discussed and a sensing mechanism is discussed

    Resistive Oxygen Gas Sensors for Harsh Environments

    Get PDF
    Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development of these sensor materials. It focuses especially on approaches to obtain a temperature independent behavior. It is shown that although in the past 40 years there have always been several research groups working concurrently with resistive oxygen sensors, novel ideas continue to emerge today with respect to improvements of the sensor response time, the temperature dependence, the long-term stability or the manufacture of the devices themselves using novel techniques for the sensitive films. Materials that are the focus of this review are metal oxides; especially titania, titanates, and ceria-based formulations

    Solid State Gas Sensor Research in Germany – a Status Report

    No full text
    This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor
    corecore