19 research outputs found

    Potential Game Based Distributed IoV Service Offloading With Graph Attention Networks in Mobile Edge Computing

    Get PDF
    Vehicular services aim to provide smart and timely services (e.g., collision warning) by taking the advantage of recent advances in artificial intelligence and employing task offloading techniques in mobile edge computing. In practice, the volume of vehicles in the Internet of Vehicles (IoV) often surges at a single location and renders the edge servers (ESs) severely overloaded, resulting in a very high delay in delivering the services. Therefore, it is of practical importance and urgency to coordinate the resources of ESs with bandwidth allocation for mitigating the occurrence of a spike traffic flow. For this challenge, existing work sought the periodicities of traffic flow by analyzing historical traffic data. However, the changes in traffic flow caused by sudden traffic conditions cannot be obtained from these periodicities. In this paper, we propose a distributed traffic flow forecasting and task offloading approach named TFFTO to optimize the execution time and power consumption in service processing. Specifically, graph attention networks (GATs) are leveraged to forecast future traffic flow in short-term and the traffic volume is utilized to estimate the number of services offloaded to the ESs in the subsequent period. With the estimate, the current load of the ESs is adjusted to ensure that the services can be handled in a timely manner. Potential game theory is adopted to determine the optimal service offloading strategy. Extensive experiments are conducted to evaluate our approach and the results validate our robust performance

    Blotting Paper-Derived Activated Porous Carbon/Reduced Graphene Oxide Composite Electrodes for Supercapacitor Applications

    No full text
    A facile strategy, engineered for low-cost mass production, to synthesize biomass-derived activated carbon/reduced graphene oxide composite electrodes (GBPCs) by one-pot carbonization of blotting papers containing graphene oxide (GO) and zinc chloride (ZnCl2) was proposed. Benefitting from the water absorption characteristic of blotting papers in which the voids between the celluloses can easily absorb the GO/ZnCl2 solution, the chemical activation and reduction of GO can synchronously achieve via one-step carbonization process. As a result, the GBPCs deliver a large specific surface area to accumulate charge. Simultaneously, it provides high conductivity for electron transfer. The symmetric supercapacitor assembled with the optimal GBPCs in 6 M KOH electrolyte exhibits an excellent specific capacitance of 204 F g−1 (0.2 A g−1), outstanding rate capability of 100 F g−1 (20 A g−1). Meanwhile, it still keeps 90% of the initial specific capacitance over 10,000 cycles. The readily available raw material, effective chemical activation, simple rGO additive, and resulting electrochemical properties hold out the promise of hope to achieve low-cost, green, and large-scale production of practical activated carbon composite materials for high-efficiency energy storage applications

    Advanced Power Management and Control for Hybrid Electric Vehicles: A Survey

    No full text
    With the trend of low emissions and sustainable development, the demand for hybrid electric vehicles (HEVs) has increased rapidly. By combining a conventional internal combustion engine with one or more electric motors powered by a battery, HEVs have the advantages over traditional vehicles in better fuel economy and lower tailpipe emissions. Nevertheless, the power management strategies (PMSs) for conventional vehicles which mainly focus on the efficiency of internal combustion engine are no longer applicable due to the complex internal structure of HEVs. Hence, a large number of novel strategies appropriate for HEVs have been surveyed, but most of the researches concentrate on discussing the classifications of PMSs and comparing their cons and pros. This paper presents a comprehensive review of power management strategies adopted in HEVs aiming at specific challenges for the first time. The categories of the existing PMSs are presented based on the different algorithms, followed by a brief study of each type including the analysis of its pros and cons. Afterwards, the implementation and optimization of power management strategies aiming at proposed challenges are introduced in detail with the description of their optimization objectives and optimized results. Finally, future directions and open issues of PMSs in HEVs are discussed

    Estimation of Sea Level Change in the South China Sea from Satellite Altimetry Data

    No full text
    The South China Sea is China’s largest marginal sea area, and it is rich in oil and gas mineral resources; thus, estimating its sea level changes is of practical significance. Based on linear and nonlinear sea level change characteristics, this paper decomposes 1992–2019 monthly mean sea level anomaly time series in the South China Sea into trend, seasonal, and random terms. This paper compares the seasonal autoregressive integrated moving average (SARIMA) and Prophet models for estimating the trend and seasonal terms and the long short-term memory (LSTM) and radial basis function (RBF) models for estimating random terms, and the more suitable models were selected. A Prophet-LSTM combined model was developed based on the accuracy results. This paper uses the combined model to study the effect of known data length on the experimental results and determines the best prediction duration. The results show that the combined model is suitable for short-term and medium-term estimations of 12–36 months. The accuracy at 36 months is 0.962 cm, which proves that the combined model has high application value for estimating sea level changes in the South China Sea

    Introduction

    No full text
    corecore