118 research outputs found

    Design and Characterization of a Novel Core–Shell Nano Delivery System Based on Zein and Carboxymethylated Short-Chain Amylose for Encapsulation of Curcumin

    Get PDF
    Curcumin is a naturally occurring hydrophobic polyphenolic compound with a rapid metabolism, poor absorption, and low stability, which severely limits its bioavailability. Here, we employed a starch–protein-based nanoparticle approach to improve the curcumin bioavailability. This study focused on synthesizing nanoparticles with a zein “core” and a carboxymethylated short-chain amylose (CSA) “shell” through anti-solvent precipitation for delivering curcumin. The zein@CSA core–shell nanoparticles were extensively characterized for physicochemical properties, structural integrity, ionic stability, in vitro digestibility, and antioxidant activity. Fourier-transform infrared (FTIR) spectroscopy indicates nanoparticle formation through hydrogen-bonding, hydrophobic, and electrostatic interactions between zein and CSA. Zein@CSA core–shell nanoparticles exhibited enhanced stability in NaCl solution. At a zein-to-CSA ratio of 1:1.25, only 15.7% curcumin was released after 90 min of gastric digestion, and 66% was released in the intestine after 240 min, demonstrating a notable sustained release effect. Furthermore, these nanoparticles increased the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH‱) free radical compared to those composed solely of zein and were essentially nontoxic to Caco-2 cells. This research offers valuable insights into curcumin encapsulation and delivery using zein@CSA core–shell nanoparticles.</p

    Improved RBF Network Intrusion Detection Model Based on Edge Computing with Multi-algorithm Fusion

    Get PDF
    Edge computing is difficult to deploy a complete and reliable security strategy due to its distributed computing architecture and inherent heterogeneity of equipment and limited resources. When malicious attacks occur, the loss will be immeasurable. RBF neural network has strong nonlinear representation ability and fast learning convergence speed, which is suitable for intrusion detection of edge detection industrial control network. In this paper, an improved RBF network intrusion detection model based on multi-algorithm fusion is proposed. kernel principal component analysis (KPCA) is used to extract data dimension and simplify data representation. Then subtractive clustering algorithm(SCM) and grey wolf algorithm(GWO) are used to jointly optimize RBF neural network parameters to avoid falling into local optimum, reduce the calculation of model training and improve the detection accuracy. The algorithm can better adapt to the edge computing platform with weak computing ability and bearing capacity, and realize real-time data analysis.The experimental results of BATADAL data set and Gas data set show that the accuracy of the algorithm is over 99% and the training time of larger samples is shortened by 50 times for BATADAL data set. The results show that the improved RBF network is effective in improving the convergence speed and accuracy in intrusion detection

    Differential analysis of chromatin accessibility and histone modifications for predicting mouse developmental enhancers

    Get PDF
    Enhancers are distal cis-regulatory elements that modulate gene expression. They are depleted of nucleosomes and enriched in specific histone modifications; thus, calling DNase-seq and histone mark ChIP-seq peaks can predict enhancers. We evaluated nine peak-calling algorithms for predicting enhancers validated by transgenic mouse assays. DNase and H3K27ac peaks were consistently more predictive than H3K4me1/2/3 and H3K9ac peaks. DFilter and Hotspot2 were the best DNase peak callers, while HOMER, MUSIC, MACS2, DFilter and F-seq were the best H3K27ac peak callers. We observed that the differential DNase or H3K27ac signals between two distant tissues increased the area under the precision-recall curve (PR-AUC) of DNase peaks by 17.5-166.7% and that of H3K27ac peaks by 7.1-22.2%. We further improved this differential signal method using multiple contrast tissues. Evaluated using a blind test, the differential H3K27ac signal method substantially improved PR-AUC from 0.48 to 0.75 for predicting heart enhancers. We further validated our approach using postnatal retina and cerebral cortex enhancers identified by massively parallel reporter assays, and observed improvements for both tissues. In summary, we compared nine peak callers and devised a superior method for predicting tissue-specific mouse developmental enhancers by reranking the called peaks

    Integrin αvÎČ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy.

    Get PDF
    RATIONALE(#br)Radiotherapy combined with immunotherapy has revealed promising outcomes in both preclinical studies and ongoing clinical trials. Targeted radionuclide therapy (TRT) is a branch of radiotherapy concerned with the use of radioisotopes, radiolabeled molecules or nanoparticles that deliver particulate radiation to cancer cells. TRT is a promising approach in cases of metastatic disease where conventional treatments are no longer effective. The increasing use of TRT raises the question of how to best integrate TRT with immunotherapy. In this study, we proposed a novel therapeutic regimen that combined programmed death ligand 1 (PD-L1)-based immunotherapy with peptide-based TRT (177Lu as the radionuclide) in the murine colon cancer model.(#br)METHODS(#br)To explore the most appropriate timing of immunotherapy after radionuclide therapy, the anti-PD-L1 antibody (αPD-L1 mAb) was delivered in a concurrent or sequential manner when 177Lu TRT was given.(#br)RESULTS(#br)The results demonstrated that TRT led to an acute increase in PD-L1 expression on T cells, and TRT in combination with αPD-L1 mAb stimulated the infiltration of CD8+ T cells, which improved local tumor control, overall survival and protection against tumor rechallenge. Moreover, our data revealed that the time window for this combination therapy may be critical to outcome.(#br)CONCLUSIONS(#br)This therapeutic combination may be a promising approach to treating metastatic tumors in which TRT can be used. Clinical translation of the result would suggest that concurrent rather than sequential blockade of the PD-1/PD-L1 axis combined with TRT improves overall survival and long-term tumor control

    Alignment of the ATLAS Inner Detector in Run 2

    Get PDF
    The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets

    A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

    Get PDF
    A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -&gt; H -&gt; mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -&gt; mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6. (C) 2020 The Author(s). Published by Elsevier B.V

    Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b channel with the ATLAS detector using pp collisions at √s = 13 TeV

    Get PDF
    This paper describes a search for beyond the Standard Model decays of the Higgs boson into a pair of new spin-0 particles subsequently decaying into b -quark pairs, H → a a → ( b ÂŻ b ) ( b ÂŻ b ) , using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy √ s = 13     TeV . This search focuses on the range 15     GeV ≀ m a ≀ 30     GeV , where the decay products are collimated; it is complementary to a previous search in the same final state targeting the range 20     GeV ≀ m a ≀ 60     GeV , where the decay products are well separated. A novel strategy for the identification of the a → b ÂŻ b decays is deployed to enhance the efficiency for topologies with small separation angles. The search is performed with 36     fb − 1 of integrated luminosity collected in 2015 and 2016 and sets upper limits on the production cross section of H → a a → ( b ÂŻ b ) ( b ÂŻ b ) , where the Higgs boson is produced in association with a Z boson

    “It Would be Harder Without Faith”: An Exploratory Study of Low‑Income Families’ Experiences of Early Childhood Inclusive Education in New Zealand

    Get PDF
    New Zealand has a reputation for having one of the most inclusive education systems in the world. However, research and anecdotal evidence show that many parents of young children with disabilities have difficulties accessing intervention and health-care services and may be less satisfied when they do receive services. In addition, though a plethora of research has been done on inclusive education, little attention has been given by researchers to low-income parents’ perspectives on early childhood inclusion in New Zealand. This paper draws on findings from a qualitative study on 30 parents’ experiences of early childhood inclusive education in New Zealand. Parents participating in this study came from different religious back-grounds, represented diverse ethnicities, all had at least one child who had a diagnosis of disabilities and/or chronical illness, and met the low-income criteria of New Zealand. Results showed that though the majority of the families appreciated the flexible time and structures of the early childhood programs their children attended, parents were concerned about the lack of intervention services for their children. In addition, these low-income families reported that they had limited access to early interventions and resources. The findings also highlight the importance of the use of positive coping methods (e.g., maintaining a positive outlook and seeking social support), and the role faith plays in family life
    • 

    corecore