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Abstract

Edge computing is difficult to deploy a complete and reliable security strategy due to its dis-
tributed computing architecture and inherent heterogeneity of equipment and limited resources.
When malicious attacks occur, the loss will be huge. RBF neural network has strong nonlinear
representation ability and fast learning convergence speed, which is suitable for intrusion detection
of edge detection industrial control network. In this paper, an improved RBF network intrusion de-
tection model based on multi-algorithm fusion is proposed. Kernel Principal Component Analysis
(KPCA) is used to extract data dimensions and simplify data representations. Then Subtractive
Clustering algorithm (SCM) and Grey Wolf algorithm (GWO) are used to jointly optimize RBF
neural network parameters to avoid falling into local optimum, reduce the calculation of model
training and improve the detection accuracy. The algorithm can better adapt to the edge com-
puting platform with weak computing ability and bearing capacity. The experimental results of
BATADAL dataset and Gas dataset show that the accuracy of the algorithm is over 99% and the
training time of larger samples is shortened by 50 times for BATADAL dataset. The results show
that the improved RBF network is effective in improving the convergence speed and accuracy in
intrusion detection.

Keywords: RBF network, intrusion detection, kernel principal component analysis, grey wolf
algorithm, edge computing.

1 Introduction
Edge computing is a new technology introduced in the field of industrial Internet in recent years.

By sinking computing, storage, network, communication and other resources to the edge of the network
(industrial site, data source, etc.), it provides edge intelligent services for applications in close range [1].
It can meet the key requirements of intelligent access, real-time communication and privacy protection
in the industrial Internet environment, and effectively reduce network overhead and system resource
consumption. However, edge devices are usually difficult to deploy a complete and reliable security
policy due to resource constraints, and are prone to single point failure when malicious attacks occur
[2]. Destroyers can choose to start from any Internet of Things equipment with security vulnerabilities
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to destroy and pollute the entire Internet ecology, tamper and falsify data, resulting in paralysis of the
entire system security defense. The data gathered by the industrial Internet usually has high privacy
and confidentiality [3]. Edge computing can complete some data processing and computing tasks at
the edge of the industrial network, avoiding the risk of leakage of sensitive data in the transmission
process of long physical links [4]. However, due to its distributed computing architecture and inherent
heterogeneity of equipment, it is more likely to become the target of Trojans and malicious software
attacks. For resource-constrained edge nodes, the existing security strategy cannot well adapt to the
edge computing architecture. Therefore, it is necessary to redesign more secure protection schemes
and measures. Intrusion detection classification algorithm is a kind of protection technology that
collects equipment and network-related information and classifies them to determine whether there is
abnormal behavior in the system [5].

Compared with cloud computing, edge computing has the advantages of low latency and high real-
time performance, which can better meet the needs of the construction of industrial Internet in the
future. However, due to the edge computing form of intelligent gateways, sensors, industrial computers,
boxes and other factories close to equipment, the computing ability and carrying capacity are weak.
Due to the limit of business carrying capacity, complex data processing models, edge computing will
not be able to adapt to the platform [6]. Therefore, based on the architecture of cloud computing, we
combine edge computing with classification algorithm to reduce the amount of calculation and improve
the calculation rate, so as to meet the security requirements of edge-side platform applications. Among
many classification algorithms, RBF has the advantages of simple network structure, adaptability and
strong nonlinear representation ability. It can adapt to different industrial production environments
by adjusting the number of neurons in the layer and the calculation rules between the network layers,
and can be used as an anomaly detection scheme for industrial control network.

Similar to the hyperparameter training of deep neural network, RBF also needs to face the problem
of parameter optimization, for which researchers at home and abroad have made a lot of studies. In
order to adjust the network structure of RBF and make it more suitable for complex scenes, literature
[7] used Principal Component Analysis (PCA) to reduce the dimension of RBF network input to
solve the problem of seismic attribute redundancy. Literature [8] proposed an RBF network learning
algorithm based on improved K-Means to eliminate the sensitivity of clustering and reduce the time
complexity. However, due to the use of local activation function, RBF network can approach any
nonlinear function, but it is easy to fall into the local optimal. Besides, a lot of research has been
carried out at home and abroad. Sun Qian et al. use Particle Swarm Optimization (PSO) to optimize
neural network parameters to solve the problem of slow convergence speed caused by random selection
of initial parameters of RBF network. But the time complexity increases and it is easier to fall into
local optimization [9]. Literature [10] put forward Genetic Algorithm (GA) to optimize the structural
parameters such as weight and network layer element number of RBF network, which is reliable, but
the selection of parameters is subjective, the convergence speed is slow, and it is easy to fall into
premature convergence [11]. The experiment of RBF network model based on ant colony algorithm
by Liu Chang improves its accuracy and speeds up the convergence. However, the algorithm needs
to search the path and has high computational cost [12]. The Grey Wolf algorithm (GWO) has the
advantages of simple structure, few parameters to be set and it is easy to implement in experimental
coding. It is also suitable for network parameter optimization, such as Swarna, for intrusion detection
system, DNN neural network parameters are optimized and adjusted by Grey Wolf algorithm, which
reduces the time complexity and improves the accuracy, which proves its feasibility [13].

Therefore, in view of the attribute redundancy and nonlinear separable industrial control network
datasets, the variable weight is difficult to determine when the algorithm is trained, and it is easy to fall
into local optimum. The paper proposes an improved RBF network intrusion detection model based on
multi-algorithm fusion. The algorithm can improve the accuracy of classification, reduce the amount
of calculation and improve the calculation speed, so as to better adapt to the edge computing platform,
facilitate data processing and analysis, and provide technical support for intelligent decision-making
and execution of local business.
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2 Edge computing platform
In the industrial control application scenario, the problem of computing resource allocation and

load balancing is very complex, and the resource management mechanism in cloud computing mode
is usually difficult to match the edge computing production environment. Therefore, edge cloud
computing architecture is widely used in the industrial field. Edge computing will be close to the
network edge side of the source of objects or data, and an open platform that integrates core capabilities
of network, computing, storage and application to provide edge intelligent services. Edge computing
is closely related to industrial control systems. Industrial control system with industrial Internet
interface is essentially an edge computing device, as shown in Figure 1.

Figure 1: 5G edge computing embedded in industrial architecture

However, in the edge computing environment, due to the limited computing resources within nodes
and the differences in computing capabilities between nodes, the edge layer is difficult to deal with
computing tasks (such as big data analysis, deep learning model fusion training and historical data
management) and storage tasks (such as mirror warehouse). In addition, because the distribution
of edge servers and device nodes is usually related to the deployment of industrial environment,
the distribution frame is fixed, and it is vulnerable to malicious attacks, resulting in huge losses.
Therefore, in view of this situation, this paper proposes an intrusion detection model based on multi-
algorithm fusion of RBF neural network to reduce the computational requirements and improve the
computational speed, so as to meet the basic needs of data processing and security protection of the
edge platform.

3 Data processing
In the face of large-scale diversified heterogeneous data on the edge side, the difficulty of extracting

useful information from the data will also increase accordingly. How to efficiently clean, aggregate
and analyze it has become a key technology. In view of this situation, we use the data preprocessing
method to standardize the data, and then use KPCA to extract the nonlinear feature of the data,
reduce the dimension of the input data, simplify the data representation, and reduce the calculation
amount after entering the neural network.

3.1 Preprocessing

The industrial control network dataset is the data collected directly from the industrial control
equipment (PLC, frequency converter, etc.) in the manufacturing field. Because of the complex field
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situation, there will be confusion of data types, redundant attributes, missing values and outliers,
which can’t be directly applied to the prediction model, so the data must be preprocessed first.

(1) Data cleaning: The probability of data missing in industrial control network is random. For
example, power failure of frequency converter or sensor, the data collected in a certain period of time
is empty or noise data, which is a small probability event, and the frequency of occurrence is not high,
and the proportion of certain records is low, we can simply delete the samples with missing value.

(2) Type conversion: Since the tag value cannot be directly used in the mathematical equation of
the network model, it is necessary to convert the tag value to a numerical value.

(3) Data reduction: In order to eliminate the dimensional influence between data features, it is
necessary to normalize the features to make the different indexes comparable. When the optimization
objective function is used to solve the problem, the update speed of different features tends to be
consistent, which can accelerate the convergence speed of the model. Due to the non-linear charac-
teristics of the dataset, Z-score standardization is adopted: X = (D − µ)/δ, where D is raw dataset
with no missing values, µ is the mean value of all samples in a single dimension, and δ is the standard
deviation of all samples in a single dimension.

3.2 KPCA nonlinear feature extraction

Suppose that the centralized sample set after preprocessing is X = [X1, X2, · · · , Xn], and it is a
n × d matrix, which represents that the number of input dimension is n , and the dimension of each
sample is d. Any vector in the space can be represented linearly by all samples, so the sample set X
is used to represent the eigenvectors:

ωi = αΦ(xi) (1)

In this paper, X is mapped to a higher dimensional space and a nonlinear mapping function Φ(x)
is introduced [14], that is: ∑d

i=1
(Φ(xi) · Φ(xi)>)

∑
αΦ(xi) = λ

∑
αΦ(xi) (2)

We multiple both sides with Φ(xi)> ,

Φ(xi)>
∑d

i=1
(Φ(xi) · Φ(xi)>)

∑
αΦ(xi) = λΦ(xi)>

∑
αΦ(xi) (3)

Command k(xi, xi) = Φ(xi)> · Φ(xi), we get the relation:

Kα = λα (4)

Where K is the kernel matrix corresponding to k, α is the eigenvector in the space, and λ is the
corresponding eigenvalue. Then, a set of bases of the high-dimensional space is obtained by formula
(1), which constitutes a subspace of the high-dimensional space Vr . The sample points mapped Φ(xi)
to the high-dimensional space are projected on Vr, and the nonlinear principal component components
are obtained as follows:

Mn = fr(xj) = Φ(xj) · Vr =
∑n

i=1
αr[Φ(xi) · Φ(xj)] =

∑n

i=1
αrK(xi, xj) (5)

4 Improved RBF Network Intrusion Detection Model
Due to the inherent distributed characteristics of edge computing, the computing resources within

nodes are limited and the computing ability between nodes is reduced, which cannot meet the require-
ments of big data analysis and deep learning model fusion training. Therefore, this paper proposes
an improved RBF network intrusion detection model based on the discrete distribution of computing
and storage resources. By optimizing the parameters to adjust the local optimum, the accuracy and
calculation rate are improved to adapt to the anomaly detection problem of edge computing platform.
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4.1 RBF Network Model

RBF network is a simple three-layer forward network. In RBF [15], input vector is directly mapped
to the hidden layer, and the mapping from hidden layer space to output space is linear. That is to
say, the output of the network is the linear weighted sum of the output of hidden units. The weight
here is the network adjustable parameter [16]. In this way, the output is nonlinear for the mapping of
network from input to output, while it is linear for adjustable parameters. The weight of the network
can be solved directly by linear equations. Thus greatly accelerate the learning speed is very conducive
to deployment to the edge side platform, as shown in Figure 2.

Figure 2: Topological structure of RBF network

The activation function can be expressed as follows [17]:

R(Mn − ci) = exp(−‖Mn − ci‖2/2σ2
i ) (6)

According to the linear weighted sum, the output is obtained as follows:

yj =
h∑
i=1

ωijexp(−‖Mn − ci‖2/2σi 2) j = 1, 2, · · · , n (7)

The supervised learning algorithm is used to train all the parameters of the network. It mainly
involves gradient descent of the cost function (mean square error), and correcting each parameter.
The total error of the network is as follows:

E =
n∑
i=1

En = 1
2

n∑
i=1

(dj − yj)2 (8)

Where Mn is input samples, ci is the central point, σi is the width of the corresponding radial
basis function, h is the number of nodes in the hidden layer, dj is the expected output, yj is the actual
output, and n is the classification number of outputs.

In this paper, RBF network structure is used, and the main parameters are optimized as follows:
how to determine the data center and expansion constant of each radial basis function, and how
to correct the output weight. This is because the radial basis function has radial symmetry. The
farther the input of neurons is away from the data center, the lower the activation degree of neurons
is, which is called “local characteristic”. In view of the above problems, this paper mainly uses the
subtractive clustering algorithm to determine the data center of RBF and the initial value of the
expansion constant. The grey Wolf algorithm is used to optimize and update the output weight and
modify it. Finally, the network model is trained to achieve the classification effect.

4.2 Subtractive clustering optimization algorithm

The subtractive clustering algorithm determines the data center (c) according to the density index,
and the expansion constant (σ) according to the distance between the cluster centers. Calculate the
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distance between each data point of the drop-dimensional data M(n× t) to get the density index:

Di =
n∑
j=1

exp[−αd(mi,mj)] α = 4/τ2
1 (9)

Find the data with the largest density index as the first cluster center, and then calculate the
density of all the remaining data points:

Di = Di −Dc1exp[−βd(mi,mc1)] β = 4/τ2
2 (10)

Where τ1 is the neighborhood radius of ; τ2 is a neighborhood whose density index function is
significantly reduced. τ2 = ητ1 .

Find the maximum density index, and take this point as the cluster center until satisfy the con-
ditions: Dci/Dc1 ≤ ε, then the iteration stops, the number of clusters is recorded as h. Calculate
the distance between all samples and each cluster center, divide samples according to the principle of
minimum distance:

I(Mj) = min
i
‖Mj − ci‖ i = 1, 2, · · · , h (11)

Calculate the distance between cluster centers:

di = min
i
‖cj − ci‖ (12)

Determine the expansion constant σi = κdi according to the distance between cluster centers,
which κ is called overlap coefficient.

4.3 The grey wolf optimization algorithm

The radial basis function has radial symmetry. The farther the input of neurons is from the data
center, the lower the activation of neurons, which is called "local optimum". In this paper, the grey
wolf algorithm is used to globally converge the weight and ameliorate the local optimal problem. The
weight matrix W from the hidden layer to the output layer trained by gradient descent method was
used as the initial position variable of adult gray wolves [18]:

W = [ω11, ω12, · · · , ω1n, ω21, · · · , ωhn] (13)

Construct the social hierarchy model of grey wolf [19], as shown in Figure 3. The total network
error is calculated according to formula (8) and used as the fitness of each individual in the population.
The three grey wolves with the best fitness in the wolf pack are marked as α,β,σ. Respectively, the
remaining grey wolves are marked as ω [20].

Figure 3: Schematic diagram of social hierarchy of Grey Wolf algorithm

Encircle prey: the wolf will gradually approach the prey and surround it when hunting. The
mathematical model of this behavior is as follows [21]:

~D = |~C · ~XP (t)− ~X(t) ~X(t+ 1) = ~Xp(t)− ~A · ~D ~A = 2~α · ~r1 − ~α ~C = 2 · ~r2 (14)

t is the current iteration number; ~A and ~C are the synergy coefficient vector; ~XP (t) represents the
position vector of prey; ~X(t) represents the current position vector of grey wolf [22]; ~r1 and ~r2 are the
random vector in [0, 1].
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Hunt [23]: in each iteration process, the best three grey wolves ( α,β,σ)in the current population
are retained, and the positions of ω is updated according to their location information [24]. The
mathematical model of this behavior can be expressed as follows [25]:

~Dα = |~C1 · ~Xα − ~X|, ~Dβ = |~C2 · ~Xβ − ~X|, ~Dσ = |~C3 · ~Xσ − ~X|
~X1 = ~Xα − ~A1 · ( ~Dα), ~X2 = ~Xβ − ~A2 · ( ~Dβ), ~X3 = ~Xσ − ~A3 · ( ~Dσ)

~X(t+ 1) = ( ~X1 + ~X2 + ~X3)/3
(15)

~Xα, ~Xβ, ~Xσ respectively represent the position vector of α,β,σ in the current population; ~Xrepresents
the position vector of grey wolf; ~Dα, ~Dβ, ~Dσ respectively represent the distance between the current
candidate grey wolf and the optimal three wolves [26].

Figure 4: Hunting process of Grey Wolf algorithm

It can be inferred from Figure 4, there is necessary for α,β,σ to predict the approximate location
of the prey [27]. Then the wolf ω randomly updates its position near the prey under the guidance of
the current optimal three wolves [28].

5 Work flow of proposed algorithm

5.1 Pseudo-code

Algorithm 1: Function <KPCA>
Input: industrial control dataset
Output: Dataset with dimension reduction
01: Data preprocessing //according to chapter 3.1
02: The centralized sample set X = [n× d] after preprocessing
03: Selected kernel function k
04: Calculate feature vector (α1, α2, · · · , αd) by formula (4)
05: Sort the eigenvalues and obtain the adjusted eigenvector (α1, α2, · · · , αt)
06: Calculate basis vector ωi by formula (1) as subspace Vr
07: Project sample points Φ(xi) on Vr
08: Calculate nonlinear principal component fr(xj) by formula (5)
09: Obtain new dataset Mn with dimension reduction
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Algorithm 2: Function <SCM-RBF>
Input: Dataset with dimension reduction Mn

Output: Data center and expansion constant of radial basis function
01: Calculate density index Di by formula (9)
02: Set the sample with the largest density index as the cluster center c1

03: Calculate density index Dci of other samples by formula (10)
04: h = 1 //initialize the number of cluster centers
05: i = 1
06: while (Dci/Dc1 ≤ ε) do
07: h = h

08: ci(h) = [c1, c2, · · · , ci]
09: else
10: i = i+ 1
11: Update all density index Dci of other samples
12: Dc ← max(Dci)
13: ci ← sample with the largest density index
14: h = h+ 1
15: end while
16: while (ci(h) 6= ci−1(h)) do
17: Calculate the distances between cluster center and samples
18: Reclassify each sample by formula (11)
19: Reset cluster center as ci−1(h)
20: end while
21: Calculate the distances between cluster centers di by formula (12)
22: Set expansion factor σi = κdi

Algorithm 3: Function < GWO-RBF>
Input: Data center ci and expansion constant of radial basis function σi
Output: The RBF model after training
01: Initialize weight matrix W randomly
02: Map W as the position vector of artificial gray wolves by formula (13)
03: Calculate the total error E of RBF network by formula (6), (7) and (8)
04: while (E ≤ Emin) do

// E is the total error of the network, Emin is minimum value set
05: while (t ≤ tmax) do

// t is the iteration, tmax is the maximum iterations set
06: Fitness of each individual in the population ← E

07: Mark the three gray wolves with best fitness as α,β,σ respectively
08: The rest of population is marked as ω
09: Predict the position of optimal solution(prey) by formula (14)
10: Keep the best three wolves (α,β,σ) in the current population
11: Update the position of ω by α,β,σ by formula (15)
12: Update weight matrix W
13: Update the total error E of RBF network
14: else
15: Keep current weight matrix W and start training
16: end while
17: end while
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5.2 Work flow of proposed algorithm

Above all, the specific flow chart of the algorithm is as shown in Figure 5.

Figure 5: Work flow of proposed algorithm in this paper

6 Experiments
In the experiment, we used two kinds of public industrial control datasets, including BATADAL

dataset and Gas dataset. We also use smaller sample dataset (Iris dataset) as controls. The PSO-RBF
algorithm and SCM-RBF algorithm were used for comparison and verification.

6.1 Dataset

The Battle of the Attack Detection Algorithms (BATADAL) is the most recent competition
on planning and management of water networks undertaken within the Water Distribution [29].
BATADAL dataset is mainly the data record of estimated water consumption dynamically estab-
lished by EPANET simulation system, which covers a time step of 492 hours and contains seven
attacks. Physical attacks are used to interfere the operation of system, which could lead to overflow,
pump speed reduction, abnormal activation or deactivation of pump, and other abnormal activity. In
addition, the attacker changes the signal sent by the sensor to the SCADA by adding an offset that
changes over time.

Dataset of a gas pipeline system in Mississippi State University’s Critical Infrastructure Protection
Center (Gas dataset) [30] is used for intrusion detection and evaluation of industrial control system,
which collects information of network affairs between remote terminal unit (RTU) and main control
unit (MTU) in SCADA natural gas pipeline. It is used to simulate actual attacks and operator
activities on natural gas pipeline.
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Table 1: Basic situation of dataset used in experiment

Name Number of
samples

Number of
positive
samples

Number of
negative
samples

Number of
training
samples

Number of
testing
samples

Dimension Number of
clusters

BATADAL
dataset 12938 8762 4176 10350 2588 44 2

Gas
dataset 97019 61156 35863 77615 19404 27 8

Iris
dataset 150 - - 120 30 4 3

Iris dataset is a classic UCI dataset, which collects three types of iris, namely Setosa, Versicolor
and Virginia iris. Each record contains four characteristics: calyx length, calyx width, petal length
and petal width. See Table 1 for details.

6.2 Experimentation

Edge calculation platform parameters:
Processor: Intel(R) Core(TM) i7-3517U CPU @ 1.90GHz 2.39GHz, System: Windows 7, Installing

memory: 8.00GB, Compiler environment: Python 3.7.4.

6.2.1 KPCA dimension reduction

Select the appropriate kernel function, then determine the number of nonlinear principal compo-
nents, and then extract the nonlinear principal components.
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Figure 6: Histogram of contribution rate of eigenvector

According to the set cumulative contribution rate, the eigenvectors corresponding to the first
t(t < d) eigenvalues are selected as α1, α2, · · · , αt. Taking the iris dataset as an example,as shown in
Figure 6, the contribution rate of the first two eigenvalues reaches about 96% after selecting linear
kernel for high-dimensional mapping, so the corresponding eigenvectors are retained.

6.2.2 Experimental results

The parameters used in this experiment are as follows: neighborhood radius: τ1 = 2 , τ2 = 4;
η = 1.5; ε = 0.99; overlap coefficient: κ = 1; number of wolves: n = 20 ; maximum number of
iterations: tmax = 10; upper and lower bounds of random variables: ub = 10 , lb = 0.01 .

Due to the unbalanced proportion of positive and negative samples in BATADAL database and
Gas dataset, the clustering algorithm is easy to cluster the two data centers to the position of positive
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samples at the same time. It means that the clustering algorithm ignores the role of negative samples,
resulting in poor classification effect. On this basis, particle swarm optimization (PSO) makes it
easier to fall into local optimum, increase the operation time and restrain the convergence speed of
the network. The grey wolf algorithm establishes a decentralized model and randomly assigns search
coefficients, which greatly improves the global search ability, avoids reducing the limitations of the
clustering algorithm, and improves the classification accuracy rate.
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Figure 7: Comparison of algorithm accuracy of BATADAL dataset
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Figure 8: Comparison of the accuracy of algorithms in Gas dataset

As shown in Figure 7 and Figure 8, the prediction accuracy of our algorithm (GWO-SCM-RBF)
can be stabilized at about 90% for the industrial control dataset with large sample, which is higher
than that of PSO-RBF, GWO-RBF and RBF constructed by traditional learning. At the same time,
we can see that the change trend of traditional RBF using gradient descent method is complex and
the convergence is very slow from the trend of the graph. Although particle swarm optimization can
improve the speed of searching for extreme value, it is easy to fall into the local optimization, and the
accuracy rate cannot be improved. The grey wolf algorithm can reach stability after iteration to 2-3
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Table 2: Comparison of evaluation indexes of the algorithm

Name RBF PSO-RBF GWO-
RBF

GWO-
SCM-RBF

KPCA-GWO-
SCM-RBF

BATADAL dataset
Accuracy (%) 38.6 38.8 67.2 99.0 99.2

Time
Consuming(s) 927.9 912.6 12998.6 175860.3 34598.2

Gas dataset
Accuracy (%) 38.3 38.0 98.9 99.0 99.5

Time
Consuming(s) 48085.2 49228.7 12998.7 29925.3 25326.7

Iris dataset
Accuracy (%) 96.7 96.7 90.0 99.0 99.3

Time
Consuming(s) 0.17 0.42 1.01 5.24 5.05

generations. The enhancement of search ability makes the convergence speed faster, the trend is more
stable than other algorithms, and the classification effect is enhanced.
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Figure 9: Comparison of the accuracy of each algorithm in Iris dataset

For Iris dataset, the accuracy of all kinds of algorithms is good. However, it can be seen from
the Figure 9 that the accuracy of GWO-RBF algorithm is slightly inferior. The RBF algorithm and
PSO-RBF algorithm tend to be stable around the sixth generation, while the algorithm in this paper
can find the global optimal value in the first two generations, and the convergence speed and stability
are significantly better. This shows that this algorithm is also suitable for smaller dataset.

After using KPCA to reduce the dimension, SCM-GWO is used to jointly optimize parameters of
RBF network, which can significantly improve the operation efficiency. The higher the dimension of
the dataset, the more obvious the time cost savings. For example, the training time of BATADAL
dataset is shortened by about 50 times. The specific evaluation indexes of experimental results are
shown in Table 2.

It can be seen from the above table that the accuracy of the improved RBF network intrusion
detection model based on multi-algorithm fusion can exceed 99% in the three datasets. Compared
with the contrast algorithm, the operation efficiency and convergence speed are significantly improved,
which can effectively solve two problems. One is that traditional RBF weight training is easy to fall
into local optimization, the other is that the width of data center and radial basis function is not
suitable due to the sensitivity of initial cluster center. The improved RBF network improves the
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Table 3: Comparison of accuracy on different algorithms
Name Accuracy (%) False Positive Rate (%) False Negative Rate (%) Time Consuming(s)

LSTM 98.3 2.17 2.69 3249751.4

RNN 95.3 2.56 2.92 3156245.4

KNN 93.1 2.10 4.22 17892.3

DNN 90.4 2.03 3.22 229481.3

OURS 99.5 2.09 2.43 25326.7

classification effect and is more stable, which shows the effectiveness and practicability in intrusion
detection.

For the Gas dataset, this paper also refers to the algorithms in the published papers to conduct a
comparative study, such as the LSTM algorithm [31] and RNN algorithm [32] based on time series, the
traditional machine learning KNN algorithm [33], and the DNN deep learning algorithm [34], so as to
more comprehensively investigate the effectiveness of the proposed algorithm in solving the industrial
control intrusion problem.

Meanwhile, it can be seen from Table 3 that compared with other classification algorithms, the
algorithm in this paper has the highest accuracy. DNN is a traditional deep neural network with
more sufficient feature extraction and the lowest false positive rate. However, DNN has poor ability
to identify attack data with fewer samples and a high false positive rate. Such algorithms as LSTM
and RNN need to spend a long time on an experimental platform with only a CPU, which is not con-
ducive to the real-time monitoring of industrial control. Experimental results show that the proposed
algorithm has higher accuracy and lower time cost under the same edge side platform configuration.

7 Discussion
In this paper, a detection model based on KPCA nonlinear extraction of main features, SCM and

GWO joint optimization of RBF network parameters and other multi-algorithm fusion is proposed.
A comparative test is carried out on the datasets of public networks such as Singapore Waterworks
and Mississippi Natural Gas, which improves the computational efficiency and detection accuracy of
the traditional RBF neural network on the CPU, and adapts to the computational requirements and
resource constraints of the edge-side platform. However, although the subtractive clustering algorithm
used in the current algorithm is independent of the data dimension, it shows a linear relationship with
the number of samples. When the sample size is too large, it will also increase the time complexity,
which is a subject that needs further study.
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