2,448 research outputs found

    Genetic Polymorphisms of Nine X-STR Loci in Four Population Groups from Inner Mongolia, China

    Get PDF
    Nine short tandem repeat (STR) markers on the X chromosome (DXS101, DXS6789, DXS6799, DXS6804, DXS7132, DXS7133, DXS7423, DXS8378, and HPRTB) were analyzed in four population groups (Mongol, Ewenki, Oroqen, and Daur) from Inner Mongolia, China, in order to learn about the genetic diversity, forensic suitability, and possible genetic affinities of the populations. Frequency estimates, Hardy-Weinberg equilibrium, and other parameters of forensic interest were computed. The results revealed that the nine markers have a moderate degree of variability in the population groups. Most heterozygosity values for the nine loci range from 0.480 to 0.891, and there are evident differences of genetic variability among the populations. A UPGMA tree constructed on the basis of the generated data shows very low genetic distance betweent Mongol and Han (Xi’an) populations. Our results based on genetic distance analysis are consistent with the results of earlier studies based on linguistics and the immigration history and origin of these populations. The minisatellite loci on the X chromosome studied here are not only useful in showing significant genetic variation between the populations, but also are suitable for human identity testing among Inner Mongolian populations

    An enhanced gas ionization sensor from Y-doped vertically aligned conductive ZnO nanorods

    Get PDF
    A stable and highly sensitive gas ionization sensor (GIS) constructed from vertically aligned, conductive yttrium–doped ZnO nanorod (YZO NR) arrays is demonstrated. The conductive YZO NRs are synthesized using a facile one-pot hydrothermal method. At higher Y/Zn molar ratio, the aspect ratio of the YZO NRs is increased from 11 to 25. Doping with yttrium atoms decreases the electrical resistivity of ZnO NRs more than 100 fold. GIS measurements reveal a 6-fold enhancement in the sensitivity accompanied with a significant reduction in breakdown voltage from the highly conductive YZO NRs. Direct correlations between the resistivity of the NRs and GIS characteristics are established

    Combination of label-free quantitative proteomics and transcriptomics reveals intraspecific venom variation between the two strains of Tetrastichus brontispae, a parasitoid of two invasive beetles

    Get PDF
    The venom apparatus is a conserved organ in parasitoids that shows adaptations correlated with life-style diversification. Combining transcriptomics and label-free quantitative proteomics, here we explored the venom apparatus components of the endoparasitoid Tetrastichus brontispae (Eulophidae), and provide a comparison of the venom apparatus proteomes between its two closely related strains, T. brontispae-Octodonta nipae (Tb-On) and T. brontispae-Brontispa longissima (Tb-Bl). Tb-Bl targets the B. longissima pupa as its habitual host. However, Tb-On is an experimental derivative of Tb-Bl, which has been exposed to the O. nipae pupa as host consecutively for over 40 generation. Results showed that approximately 1505 venom proteins were identified in the T. brontispae venom apparatus. The extracts contained novel venom proteins, such as 4-coumarate-CoA ligase 4. A comparative venom proteome analysis revealed that significant quantitative and qualitative differences in venom composition exist between the two strains; although the most abundant venom proteins were shared between them. The differentially produced proteins were mainly enriched in fatty acid biosynthesis and melanotic encapsulation response. Six of these enriched proteins presented increased levels in Tb-On, and this result was validated by parallel reaction monitoring (PRM) analysis. Overall, our data reveal that venom composition can evolve quickly and respond to host selection

    Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys

    Get PDF
    This is the published version. Copyright 2012 Royal Society of ChemistryAmorphous alloys structurally deviate from crystalline materials in that they possess unique short-range ordered and long-range disordered atomic arrangement. They are important catalytic materials due to their unique chemical and structural properties including broadly adjustable composition, structural homogeneity, and high concentration of coordinatively unsaturated sites. As chemically reduced metal–metalloid amorphous alloys exhibit excellent catalytic performance in applications such as efficient chemical production, energy conversion, and environmental remediation, there is an intense surge in interest in using them as catalytic materials. This critical review summarizes the progress in the study of the metal–metalloid amorphous alloy catalysts, mainly in recent decades, with special focus on their synthetic strategies and catalytic applications in petrochemical, fine chemical, energy, and environmental relevant reactions. The review is intended to be a valuable resource to researchers interested in these exciting catalytic materials. We concluded the review with some perspectives on the challenges and opportunities about the future developments of metal–metalloid amorphous alloy catalysts

    ERCC2 2251A>C genetic polymorphism was highly correlated with early relapse in high-risk stage II and stage III colorectal cancer patients: A preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early relapse in colorectal cancer (CRC) patients is attributed mainly to the higher malignant entity (such as an unfavorable genotype, deeper tumor invasion, lymph node metastasis and advance cancer stage) and poor response to chemotherapy. Several investigations have demonstrated that genetic polymorphisms in drug-targeted genes, metabolizing enzymes, and DNA-repairing enzymes are all strongly correlated with inter-individual differences in the efficacy and toxicity of many treatment regimens. This preliminary study attempts to identify the correlation between genetic polymorphisms and clinicopathological features of CRC, and evaluates the relationship between genetic polymorphisms and chemotherapeutic susceptibility of Taiwanese CRC patients. To our knowledge, this study discusses, for the first time, early cancer relapse and its indication by multiple genes.</p> <p>Methods</p> <p>Six gene polymorphisms functional in drug-metabolism – <it>GSTP1 </it>Ile105Val, <it>ABCB1 </it>Ile1145Ile, <it>MTHFR </it>Ala222Val, <it>TYMS </it>double (2R) or triple (3R) tandem repeat – and DNA-repair genes – <it>ERCC2 </it>Lys751Gln and <it>XRCC1 A</it>rg399Gln – were assessed in 201 CRC patients using a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) technique and DNA sequencing. Patients were diagnosed as either high-risk stage II (T2 and 3 N0 M0) or III (any T N1 and 2 M0) and were administered adjuvant chemotherapy regimens that included 5-fluorouracil (5FU) and leucovorin (LV). The correlations between genetic polymorphisms and patient clinicopathological features and relapses were investigated.</p> <p>Results</p> <p>In this study, the distributions of <it>GSTP1 </it>(<it>P </it>= 0.003), <it>ABCB1 </it>(<it>P </it>= 0.001), <it>TYMS </it>(<it>P </it>< 0.0001), <it>ERCC2 </it>(<it>P </it>< 0.0001) and <it>XRCC1 </it>(<it>P </it>= 0.006) genotypes in the Asian population, with the exception of <it>MTHFR </it>(<it>P </it>= 0.081), differed significantly from their distributions in a Caucasian population. However, the unfavorable genotype <it>ERCC2 </it>2251A>C (<it>P </it>= 0.006), tumor invasion depth (<it>P </it>= 0.025), lymph node metastasis (<it>P </it>= 0.011) and cancer stage (<it>P </it>= 0.008) were significantly correlated with early relapse. Patients carrying the <it>ERCC2 </it>2251AC or2251CC genotypes had a significantly increased risk of early relapse (OR = 3.294, 95% CI, 1.272–8.532).</p> <p>Conclusion</p> <p>We suggest that <it>ERCC2 </it>2251A>C alleles may be genetic predictors of early CRC relapse.</p

    Measurement of azimuthal asymmetries in inclusive charged dipion production in e+ee^+e^- annihilations at s\sqrt{s} = 3.65 GeV

    Get PDF
    We present a measurement of the azimuthal asymmetries of two charged pions in the inclusive process e+eππXe^+e^-\rightarrow \pi\pi X based on a data set of 62 pb1\rm{pb}^{-1} at the center-of-mass energy s=3.65\sqrt{s}=3.65 GeV collected with the BESIII detector. These asymmetries can be attributed to the Collins fragmentation function. We observe a nonzero asymmetry, which increases with increasing pion momentum. As our energy scale is close to that of the existing semi-inclusive deep inelastic scattering experimental data, the measured asymmetries are important inputs for the global analysis of extracting the quark transversity distribution inside the nucleon and are valuable to explore the energy evolution of the spin-dependent fragmentation function.Comment: 7 pages, 5 figure

    Measurement of the e+eπ+π\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^- Cross Section between 600 and 900 MeV Using Initial State Radiation

    Get PDF
    We extract the e+eπ+πe^+e^-\rightarrow \pi^+\pi^- cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb1^{-1} taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor Fπ2|F_\pi|^2 as well as the contribution of the measured cross section to the leading order hadronic vacuum polarization contribution to (g2)μ(g-2)_\mu. We find this value to be aμππ,LO(600900  MeV)=(368.2±2.5stat±3.3sys)1010a_\mu^{\pi\pi,\rm LO}(600-900\;\rm MeV) = (368.2 \pm 2.5_{\rm stat} \pm 3.3_{\rm sys})\cdot 10^{-10}.Comment: 14 pages, 7 figures, accepted by PL
    corecore