68 research outputs found

    Dynamic pathfinding for a swarm intelligence based UAV control model using particle swarm optimisation

    Get PDF
    In recent years unmanned aerial vehicles (UAVs) have become smaller, cheaper, and more efficient, enabling the use of multiple autonomous drones where previously a single, human-operated drone would have been used. This likely includes crisis response and search and rescue missions. These systems will need a method of navigating unknown and dynamic environments. Typically, this would require an incremental heuristic search algorithm, however, these algorithms become increasingly computationally and memory intensive as the environment size increases. This paper used two different Swarm Intelligence (SI) algorithms: Particle Swarm Optimisation and Reynolds flocking to propose an overall system for controlling and navigating groups of autonomous drones through unknown and dynamic environments. This paper proposes Particle Swarm Optimisation Pathfinding (PSOP): a dynamic, cooperative algorithm; and, Drone Flock Control (DFC): a modular model for controlling systems of agents, in 3D environments, such that collisions are minimised. Using the Unity game engine, a realtime application, simulation environment, and data collection apparatus were developed and the performances of DFC-controlled drones—navigating with either the PSOP algorithm or a D* Lite implementation—were compared. The simulations do not consider UAV dynamics. The drones were tasked with navigating to a given target position in environments of varying size and quantitative data on pathfinding performance, computational and memory performance, and usability were collected. Using this data, the advantages of PSO-based pathfinding were demonstrated. PSOP was shown to be more memory efficient, more successful in the creation of high quality, accurate paths, more usable and as computationally efficient as a typical incremental heuristic search algorithm when used as part of a SI-based drone control model. This study demonstrated the capabilities of SI approaches as a means of controlling multi-agent UAV systems in a simple simulation environment. Future research may look to apply the DFC model, with the PSOP algorithm, to more advanced simulations which considered environment factors like atmospheric pressure and turbulence, or to real-world UAVs in a controlled environment

    Conduit artery structure and function in lowlanders and native highlanders: relationships with oxidative stress and role of sympathoexcitation

    Get PDF
    Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged ( 2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders(Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation(FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2 –) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2 vs. 6.6 ± 0.3 m s−1; P = 0.001). These changes persisted at days 12–14, and after allometricallyscaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio ( 19%, P 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2 – increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r=−0.53) and chronic (n = 7, r=−0.69; P 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n=11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspiredO2 fraction (FIO2 )=0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7±1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling

    Impact of prolonged sitting on vascular function in young girls

    Get PDF
    Excessive sedentary behaviour has serious clinical and public health implications; however, the physiological changes that accompany prolonged sitting in the child are not completely understood. Herein, we examined the acute effect a prolonged period of sitting has upon superficial femoral artery function in 7- to 10-year-old girls and the impact of interrupting prolonged sitting with exercise breaks. Superficial femoral artery endothelium-dependent flow-mediated dilatation, total shear rate, anterograde and retrograde shear rates and oscillatory shear index were assessed before and after two experimental conditions: a 3 h uninterrupted period of sitting (SIT) and a 3 h period of sitting interrupted each hour with 10 min of moderate-intensity exercise (EX). A mixed-model analysis of variance was used to compare between-condition and within-condition main effects, controlling for the within-subject nature of the experiment by including random effects for participant. Superficial femoral artery endothelium-dependent flow-mediated dilatation decreased significantly from pre- to post-SIT (mean difference 2.2% flow-mediated dilatation; 95% confidence interval = 0.60–2.94%, P < 0.001). This relative decline of 33% was abolished in the EX intervention. Shear rates were not significantly different within conditions. Our data demonstrate the effectiveness of short but regular exercise breaks in offsetting the detrimental effects of uninterrupted sitting in young girls

    Macrophages promote angiogenesis in human breast tumour spheroids in vivo

    Get PDF
    An in vivo model has been established to study the role of macrophages in the initiation of angiogenesis by human breast tumour spheroids in vivo. The extent of the angiogenic response induced by T47D spheroids implanted into the dorsal skinfold chamber in nude mice was measured in vivo and compared to that induced by spheroids infiltrated with human macrophages prior to implantation. Our results indicate that the presence of macrophages in spheroids resulted in at least a three-fold upregulation in the release of vascular endothelial growth factor (VEGF) in vitro when compared with spheroids composed only of tumour cells. The angiogenic response measured around the spheroids, 3 days after in vivo implantation, was significantly greater in the spheroids infiltrated with macrophages. The number of vessels increased (macrophages vs no macrophages 34±1.9 vs 26±2.5, P<0.01), were shorter in length (macrophages vs no macrophages 116±4.92 vs 136±6.52, P<0.008) with an increased number of junctions (macrophages vs no macrophages 14±0.93 vs 11±1.25, P<0.025) all parameters indicative of new vessel formation. This is the first study to demonstrate a role for macrophages in the initiation of tumour angiogenesis in vivo

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore