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Key point summary 

 

 Information describing alterations in vascular function during either acute or prolonged 

normobaric or hypobaric hypoxia is sparse and often confounded by pathology and 

methodological limitations. 

 

 We show that high altitude exposure in lowlanders is associated with impairments in both 

endothelial and smooth muscle function, and with increased central arterial stiffness. 

Furthermore, in all of these respects, lowlanders’ vasculature becomes comparable to that 

of natives born and raised at altitude.  

 

 Changes in endothelial function occur very rapidly in normobaric hypoxia, and partly 

under the influence of sympathetic nerve activity. 

 

 Thus, a lifetime of high altitude exposure neither attenuates nor intensifies the 

impairments in vascular function observed with short-term exposure in lowlanders; such 

impairment and altered structure likely translate into an elevated cardiovascular risk.  

 

Word count: 122 
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Abstract 

Research detailing the normal vascular adaptions to high altitude is minimal and often 

confounded by pathology (e.g., chronic mountain sickness) and methodological issues. We 

examined vascular function and structure in: 1) Healthy lowlanders during acute hypoxia and 

prolonged (~2 weeks) exposure to high altitude, and 2) High-altitude natives at 5050 m 

(highlanders). In 12 healthy lowlanders (aged 32±7 y) and 12 highlanders (Sherpa; 33±14 y) we 

assessed brachial endothelium-dependent flow mediated dilation (FMD), endothelium-

independent dilation (via glyceryl trinitrate; GTN), common carotid intima thickness (CIMT) 

and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation 

tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid 

hydroperoxides, LOOH), nitrite (NO
2

) and lipid soluble antioxidants were also obtained at rest. 

In lowlanders, measurements were performed at sea level (334 m) and between days 3-4 (acute 

high altitude) and 12-14 (chronic high altitude) following arrival to 5050 m. Highlander were 

assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD 

(7.9 ± 0.4 vs. 6.8 ± 0.4%; P=0.004) and GTN-dilation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P=0.006), and 

raised central-PWV (6.0 ± 0.2 vs. 6.6 ± 0.3 m/s; P=0.001). These changes persisted at days 12-

14, and after allometrically scaling FMD to adjust for altered baseline diameter. Compared to 

lowlanders at sea level and high altitude, highlanders had a lower carotid wall: lumen ratio 

(~19%, P≤0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and 

NO
2

 increased with high altitude in lowlanders, only LOOH correlated with the reduction in 

GTN-induced dilation evident during acute (n=11, r=-0.53) and chronic (n=7, r=-0.69; P≤0.01) 

exposure to 5050 m. In a follow-up, placebo-controlled experiment (n=11 healthy lowlanders) 

conducted in a normobaric hypoxic chamber (FIO2=0.11; 6 h), a sustained reduction in FMD was 

evident within 1 hr of hypoxic exposure when compared to normoxic baseline (5.7 ±1.6 vs. 8.0 

±1.3%; P<0.01); this decline in FMD was largely reversed following α1-adrenoreceptor 

blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in 

vascular function, which was mediated partially via oxidative stress and sympathoexcitation. 

Although a lifetime of high altitude exposure neither intensifies nor attenuates the impairments 

seen with short-term exposure, chronic high altitude exposure appears to be associated with 

arterial remodeling.  
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Abbreviations list  

BP, blood pressure; CCA, carotid artery; CIMT, carotid intima media thickness; CV, coefficient 

variation, ECG, electrocardiogram; FMD, flow-mediated dilatation, GTN, gyceryl trinitrate, HR, 

heart rate; LOOH, lipid peroxidation; MAP, mean arterial blood pressure; NO, Nitric oxide; 

NO
2

, Nitrite; PWV, pulse-wave velocity; SaO2, Arterial oxygen saturation; SR, shear rate. 
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Introduction  

Ambient hypoxia associated with high altitude is a potent activator of the sympathetic nervous 

system (Saito et al., 1988; Marshall, 1994; Duplain et al., 1999; Xie et al., 2001; Hansen & 

Sander, 2003), which causes vascular dysfunction (Hijmering et al., 2002). Indeed, intermittent 

or sustained hypoxia in pathologies such as sleep apnoea, have been associated with vascular 

dysfunction (Lurie, 2011; Phillips et al., 2013). However, information describing alterations in 

vascular function during either acute or prolonged exposure to high altitude is sparse and often 

confounded by pathology (i.e. acute / chronic mountain stickiness, metabolic syndrome) and 

methodological issues. Previously, acute exposure to high altitude (3,450 m and 4,770 m) has 

been reported to  impair endothelial function (Rhodes et al., 2011). However, these conclusions 

were based on measurements derived from finger photoplethysmography and derived estimates 

of changes in arterial stiffness and tone, rather than the more direct and widely adopted non-

invasive measures of pulse-wave velocity (PWV; a measure of arterial stiffness (Laurent et al., 

2006)) and endothelium flow-mediated dilatation (FMD; as a measure of vascular function 

(Corretti et al., 2002; Green, 2005)).  

Frick et al. (2006) assessed endothelial-dependent FMD following acute (1 day) and prolonged 

(3 week) exposure to a moderate altitude (1,700 m) in individuals with the metabolic syndrome. 

Endothelial-dependent FMD was unchanged during acute exposure but impaired following the 

prolonged exposure (despite participation in an exercise intervention over this period). However, 

methodological issues existed which cloud interpretation of those data, including: lack of a 

control group; uncertain non standardisation of cuff placement during the FMD assessment, and 

lack of continuous monitoring of artery diameter and blood flow during reactive hyperaemia 

(Thijssen et al., 2011). Specifically, the lack of continuous monitoring of artery diameter and 

blood flow can result in measurement error, and the true peak response may have been missed 

(Black et al., 2008). Furthermore, 1700 m is a relatively weak hypoxic stimulus relative to 

altitudes that are readily accessed or lived in by many, thus the potential negative effect of high-

altitude exposure on vascular function and structure in lowlanders, especially in a non-diseased 

population has not been adequately established. 

Impairments in brachial vascular function and structure have been recently documented in native 

Andean highlanders, with chronic mountain sickness (Rimoldi et al., 2012; Bailey et al., 2013). 
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Despite elevated levels of oxidative stress, endothelial-dependent FMD in the highlanders free 

from chronic mountain sickness was found to be comparable to healthy lowlanders at sea level 

(Rimoldi et al., 2012). Yet, healthy lowlanders exposed to acute normobaric hypoxia exhibited 

vascular dysfunction, based on indirect biomarkers of oxidative stress (Bailey et al., 2013). 

Whilst the research findings of Rimoldi et al. (2012) and Bailey et al. (2013) are relevant to 

chronic mountain sickness, vascular function in healthy lowlanders travelling from sea level to 

high altitude has not been comprehensively examined, nor compared with permanent high-

altitude residents. The latter is of particular interest given that native highlanders have been 

reported to show earlier cardiovascular degeneration changes with ageing, in particular arterial 

wall stiffening (Otsuka et al., 2005). 

We therefore aimed to 1) Examine potential alterations in vascular function and structure in 

healthy lowlanders following initial ascent and ~2 weeks of acclimatisation to high altitude 

(5050 m), and 2) Examine the potential effect of chronic exposure to hypoxia on vascular 

function and structure in native Sherpa’s (highlanders) born and permanently residing at high 

altitude. We hypothesised that: 1) Lowlanders’ endothelial-dependent FMD and arterial stiffness 

would be impaired following acute exposure to high altitude, and further impairments would be 

evident following a more chronic stay at high altitude; 2) Measures of vascular function and 

structure in highlanders would be comparable to lowlanders at sea level; however, following ~2 

weeks of high-altitude exposure, measures of vascular function and structure would be impaired 

in lowlanders compared to highlanders. To provide some mechanistic insight into potential 

alterations in vascular function, hypoxic-mediated alterations in systemic oxidative stress, nitrite 

(NO 2 ) and antioxidants were also quantified from plasma samples. It was anticipated that 

increased oxidative stress and concomitant reductions in NO
2

at high altitude would be related to 

impairments in vascular function.  

In addition, based on the findings from this study (study 1) we conducted a follow-up study 

(study 2) to gain further insight on the mechanisms and time-course changes in the FMD 

response during acute hypoxic exposure. An increase in sympathetic outflow has previously been 

shown to attenuate FMD by ~57% (relative), yet this attenuation was completely abolished by 

alpha (α)-adrenergic blockade (Hijmering et al., 2002). We reasoned that the FMD impairment 

seen with high altitude might also have been mediated via elevations in sympathetic nerve 
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activity via an α-adrenergic mechanism; therefore, blocking the hypoxic-induced elevations in 

sympathetic nerve activity may potentially restore FMD. To address this possibility, we 

conducted a placebo-controlled experiment (study 2; n=11) in a normobaric hypoxic chamber 

(FIO2=~0.11; ~6 h) following selective α1 -sympathetic receptor blockade (1 mg/20 kg body 

mass; prazosin). We hypothesised that: 1) FMD would be progressively impaired in normobaric 

hypoxia, and 2) α1-adrenergic blockade would partially normalize the hypoxic-induced 

reductions in FMD.  

 

Methods  

Ethical approval 

Study 1 and 2 were approved by the Human Ethics Committee of the University of British 

Columbia and the Nepal Health Medical Research Council, and conformed to the standards set 

by the Declaration of Helsinki. Verbal and or written consent was obtained by all participants. 

Sea-level experiments took place at the University of British Columbia, Okanagan (344 m; 

barometric pressure 755 ± 7 mm Hg) while high-altitude experiments were conducted at the Ev-

K2-CNR Pyramid Laboratory in the Khumbu Valley in Nepal (5050 m; barometric pressure 413 

± 1 mm Hg).  

Study 1 - high altitude 

Participants 

Lowlanders: Twelve healthy normotensive volunteers (10 males; 2 females) with a mean ± SD 

age of 32 ± 7 yrs, body mass 76 ± 13 kg, height 176 ± 7 cm and body mass index 25 ± 4  kg/m
2
, 

were recruited for this experiment. Participants were non-smokers, had no previous history of 

cardiovascular, cerebrovascular or respiratory diseases, and were not taking any cardiovascular 

medications. All participants were born and lived close to sea level (<1000 m) and none had 

been to high altitude for >2 years.  
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Highlanders: Following informed consent, twelve male natives Sherpa’s (33 ± 14 yrs; body mass 

69 ± 16 kg, height 170 ± 8 cm, body mass index 24 ± 5 kg/m
2
) were screened through Nepalese 

translation by a medical practitioner, and had no known previous history of cardiovascular, 

cerebrovascular or respiratory diseases, nor were they taking any cardiovascular medications. All 

participants were born and permanently residing at high altitude between 3440 m – 6119 m 

(mean ± SD: 4372 ± 673 m).  

 

Design and ascent protocol 

Following screening and familiarisation with the experimental procedures, lowland participants 

underwent the experimental session at sea level, upon initial arrival at high altitude (between 

days 3 and 4; acute-high altitude) and following 12-14 days of acclimatisation (chronic-high 

altitude; see figure 1), while the highlander group completed one session at high altitude (5050 

m) only (testing procedures were identical except for brachial artery vasodilator capacity test, see 

below). Lowland participants spent 6 days at Kathmandu (1400 m) before flying to Lukla (2860 

m). Participants then trekked to the Ev-K2-CNR Pyramid Laboratory over a 9-11-day period, 

which included rest days at Namche Bazar (3450 m), Pangboche (3985 m) and Pheriche (4371 

m). Arrival at 5050 m for the lowland group was staggered to facilitate measures within the 

desired time course across the two weeks, consequentially, participants arrived at 5050 m after 

spending 1 (n=6), 2 (n=4) or 3 (n=2) rest days at 4371 m. Participants were given low-dose 

acetazolamide (125 mg bd) for the first 7 days of ascent to minimise acute mountain sickness 

prophylaxis, as recommended (Basnyat et al., 2006). Importantly, treatment was discontinued on 

day 8 to allow for sufficient clearance time (i.e., >48 h) (Ritschel et al., 1998). Experimental 

testing began after 12-h abstinence from alcohol, caffeine, and strenuous exercise, and a 4-h fast. 

This study was part of a larger research expedition and consequently participants took part in a 

number of studies conducted during 3 weeks at the Pyramid Laboratory. The recovery time 

between the various testing sessions was managed to prevent any potential for confounding 

results (e.g., >48 hours between all drug and/or exercise intervention studies). 

 

Measurements  

All measures were made following a minimum of 15 min of supine rest. Arterial oxygen 

saturation (SaO2) was monitored via pulse oximetry (Pulse Oximeter MD300K1; Vacumed, 
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Canada). Continuous beat-to-beat measures of arterial blood pressure (BP; finger 

photoplethysmography; Finapres Medical Systems, Biomedical Instruments, The Netherlands) 

and heart rate (HR, 3-lead ECG; ML132, ADInstruments, Colorado Springs CO, USA) were 

recorded. Manual sphygmomanometer BP recordings were obtained during supine rest to 

confirm the accuracy of the finger photoplethysmography measurements. All data were sampled 

continuously using an analogue-digital converter (PowerLab/4S ML750; ADInstruments) 

interfaced with a computer and displayed in real time during testing. Data were stored for 

subsequent off-line analysis using the commercially available software (Chart v7, 

ADInstruments). All tests were completed in the following order: 

 

Arterial stiffness: Adhering to the international guidelines (Laurent et al., 2006), hand held-

tonometry (SPT-301 Millar Instruments, Houston, Texas) was employed to assess central 

(carotid-femoral PWV) and peripheral (carotid-radial PWV) arterial stiffness. Twenty 

reproducible carotid-femoral artery waveforms and 20 separate carotid-radial artery waveforms 

were recorded simultaneously using mechanotransducers, which were applied directly to the skin 

and over the area of greatest pulsation. The distance from the 4
th

 intercostal space in the midline 

of the sternum to the individual carotid, femoral and radial artery pulse sites were measured 

along the surface of the body using a measuring tape. This technique was used as it has been 

shown to have the best agreement with aortic PWV measured invasively using cardiac 

catheterization (Weber et al., 2009). The foot to foot method was used to determine pulse transit 

time, using a bandpass filter (5-30 Hz) to identify the foot or “notch” of the carotid-femoral and -

radial waveform, and the difference in time from R interval to systolic upstroke at each location. 

Pulse distance was determined by subtracting the distance from carotid measurement to the 

sternal notch from the distance from the sternal notch to the femoral and radial pulse site 

measurement. Pulse-wave velocity was then determined by dividing distance by pulse transit 

time. The day-to-day intra-observer coefficient variation (CV) for central and peripheral PWV 

(n=6) was 4.8% and 4.7%, respectively (Lewis et al., unpublished observations). 

 

Local artery stiffness in the common carotid artery (CCA) was also assessed. Carotid ultrasound 

images and carotid BP were collected simultaneously over 20-30 cardiac cycles. Left CCA BP 

waveforms, a representative of carotid arterial pressure, were obtained using the hand-held 
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tonometer positioned over the greatest pulsation. Right CCA ultrasound images were obtained 

~1-2 cm proximal to the bifurcation of the external and internal carotid arteries using a 10-MHz 

multifrequency linear array probe, attached to a B-mode high-resolution ultrasound machine 

[Terason 3000TM, Teratech, Burlington, MA, USA]. Maximal and minimal lumen diameters 

were calculated using edge-detection software (described below). Ten carotid and brachial 

waveforms along with 10 complete cardiac cycles of carotid diameter change were averaged, and 

carotid arterial compliance, distensibility and ß-stiffness index were calculated (Tanaka et al., 

2000) (Figure 2).  

Carotid Intima-Medial Thickness (CIMT): The right carotid artery was imaged in the 

anterolateral, posterolateral and mediolateral planes, 1-2 cm proximal to the carotid bulb (Stein 

et al., 2008), using a high-resolution ultrasound machine (Vivid-q, GE, Fairfield, CT, USA) 

attached to an 8L-RS MHz high frequency linear array transducer. Participants were measured in 

the supine position with a slight hyperextension of the neck at a 45° angle. The CIMT at end-

diastole (1 frame prior to the R-interval) of 10 successive beats were recorded at each of the 

three angles and averaged. All analysis was completed offline using commercial edge-detection 

software (EchoPAC PC, GE Healthcare; Figure 2). To correct for differences in diameter, we 

also calculated the wall-to-lumen ratio. 

Brachial artery vascular function: A 10-MHz multifrequency linear array probe attached to a 

high-resolution ultrasound machine (Terason 3000
TM

, Teratech) was used to image the brachial 

artery in the right arm during the three tests employed to examine brachial vascular function:  

 

Endothelium-dependent FMD: FMD was assessed according to international guidelines (Black et 

al., 2008). With the occluding cuff placed distal to the ultrasound probe, 1 min of diameter and 

flow recordings preceded forearm cuff inflation (>200 mm Hg) for 5 min. Diameter and flow 

recordings resumed 30 s prior to cuff deflation and continued for 3 min thereafter. In the current 

study the day-to-day intra-observer CV for FMD was 3.6% (n=6; Lewis et al., unpublished 

observations). 

 

Brachial artery vasodilator capacity:  Following a 10-min resting period, the occluding cuff was 

positioned above the imaged part of the brachial artery, i.e., proximally on the upper arm. 
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Following 1 min of diameter and velocity recordings, the cuff was inflated (>200 mm Hg) for 5 

min. During the middle 3 min of cuff occlusion, ischaemic handgrip exercise was performed. 

Diameter and flow recordings resumed 30 s prior to cuff deflation and continued for 3 min 

thereafter. This protocol results in a near-maximal dilatation of the brachial artery in humans and 

provides a valid index of peak vasodilator capacity (Tinken et al., 2008). In the current study the 

day-to-day intra-observer CV was 6.7% (n=6; Lewis et al., unpublished observations).  

 

Endothelium-independent FMD (GTN): Following 10 min of rest, brachial diameter and velocity 

were recorded for 1 min. Participants then received a sublingual dose of glyceryl trinitrate (GTN; 

400 µg spray). Diameter and flow recordings were taken continuously for a 10-min period 

thereafter. 

 

Metabolic measurements: In lowlanders only, venous blood was obtained without stasis from a 

forearm antecubital vein after at least 20 min of supine rest, at sea level (n=11) as well as one 

day (n=11) and one week (n=7) after arrival at high altitude. Blood was collected into EDTA and 

serum vaccutainers. EDTA-plasma was drawn after centrifugation (3000 rpm at 4 °C) for 10 min 

and serum was drawn after leaving vaccutainers at room temperature for 60 min prior to 

centrifugation. Plasma and serum were placed in a -80 °C freezer at sea level, or -40 °C freezer 

at high altitude, for up to 10 days where they remained frozen during transport on dry-ice to the 

UK prior to batch analysis. 

 

Biomarkers of oxidative stress and NO bioavailability:  

Antioxidants: Plasma /γ-tocopherol, /β-carotene, retinol, lycopene, zexanthin, β-cryptoxanthin 

and lutein were determined using an HPLC method (Catignani & Bieri, 1983; Thurnham et al., 

1988). The intra and inter-assay CV were both <5%. 

Lipid hydroperoxides (LOOH): Serum LOOH was determined using the ferrous iron/xylenol 

orange assay (Wolff, 1994) with modification.  The intra/inter-assay CV were both <5%. 

 

Nitrite (NO 2 ): Plasma NO 2

 
was measured via ozone-based chemiluminescence (OBC Model 

280i, NOA
®
, Sievers, Boulder, CO, USA) following reduction by potassium iodide in acetic acid 
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according to established methods (Pelletier et al., 2006). The intra and inter-assay CV were both 

<5%. 

Study 2 - Normobaric hypoxia and α1-adrenoreceptor blockade 

Eleven healthy normotensive volunteers (7 males: 4 females) with a mean (± SD) age of 24 ± 3 

years, body mass 75 ± 10 kg, height 174 ± 6 cm and body mass index 25 ± 3 kg/m
2
, participated 

in this randomized placebo-controlled experiment. Experimental sessions commenced between 

08:00 and 09:00 hrs and measurements of FMD, SaO2 and BP (as described above) were made in 

normoxia and during normobaric hypoxia (FIO2=0.11) at 60 min, 210 min and 330 min, and then 

60 min after returning to normobaric normoxia (Figure 1). This level of hypoxia was chosen as it 

equivalent to an altitude of 5,000 m. Participants ingested the α1-adrenoreceptor blocker, 

prazosin (1 mg/20 kg body mass) or an identical placebo capsule 90 min before the last 

assessment in hypoxia. Prazosin has been shown to induce systemic peripheral arterial-dilation 

and venodilation via the removal of sympathetic nerve activity (Awan et al., 1977; Jauernig et 

al., 1978). This clinically-acceptable dose of prazosin has previously been shown to have a 

functional block of ~80% and peak activity 90- to 180-min post-ingestion (Ogoh et al., 2008; 

Jones et al., 2011; Lewis et al., 2012, 2013).  Each experiment was separated by ≥ 7 days, and a 

small standardised snack and 250 mL of water were provided following each FMD assessment.  

 

Data Analysis 

Calculations: Baseline measures of BP and HR were averaged over 1 min following 15-min 

supine rest. Custom-designed edge-detection and wall-tracking software, which is largely 

independent of investigator bias, was utilised for the analysis of CCA and brachial diameter and 

brachial blood flow velocity [(Woodman et al., 2001; Black et al., 2008) see Figure 2]. This 

software provides continuous and simultaneous diameter, velocity and shear rate (SR; 4 x 

velocity / diameter) measurements, as well as post hoc calculation of FMD, vasodilator capacity 

and GTN responses. This semi-automated software provides higher reproducibility of diameter 

measurements and reduces both observer error and bias with a reported intra-observer CV for 

FMD% of 6.7% (Woodman et al., 2001). Data are presented as absolute (millimetres) and 

relative (percentage) rises from the preceding baseline diameter and are calculated based on 
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standardised algorithms applied by the software (Black et al., 2008). In accordance with 

procedural recommendations (Pyke & Tschakovsky, 2005, 2007; Atkinson et al., 2009), we also 

measured the post-deflation area under the shear rate curve in order to best interpret any changes 

in FMD. Recent evidence has highlighted that the general use of FMD% is associated with 

statistical bias as it may fail to consider the difference in baseline artery diameter following an 

intervention or between groups (Atkinson & Batterham, 2013; Atkinson et al., 2013). Therefore, 

using recent guidelines that provide a statistical quantification of FMD, which is independent of 

baseline artery size (Atkinson & Batterham, 2013; Atkinson et al., 2013); we adopted an 

allometric scaling approach to adjust for variability in baseline diameter. These results are 

presented as “corrected” FMD %. This approach is reported to improve the specificity and 

interpretation of the FMD protocol (Atkinson & Batterham, 2013; Atkinson et al., 2013) and is 

used herein as a complementary measure of vascular function.  

 

Statistical analysis: All data were analysed using SPSS (version 21, IBM, Surrey, UK) and 

expressed as mean ± SD. Statistical significance was defined as P≤0.05 and distribution 

normality confirmed using repeated Shapiro-Wilk W tests. Study 1: Trial differences within 

lowlanders between sea-level, initial-high altitude and prolonged-high altitude were analysed 

using a one-way repeated measures ANOVA. Pearson’s correlation analysis was used to 

examine the relationship between measures. Difference between highlanders and lowlanders at 

were explored using independent t-tests. Study 2: The time course changes of hypoxia in the 

placebo trial were examined using one-way repeated measures ANOVA, to establish the effect of 

the hypoxic stimulus on FMD. To examine the interaction between the time course change and 

experimental condition (placebo vs. α1-blockade) a two-way repeated measures ANOVA was 

used; to further exposure any significant interaction effect, paired t-tests were used to exposure 

the effect of the α1-blockade on the vascular changes with hypoxia.  

 

Results 

Study 1 

Lowlanders at high altitude: Arterial oxygen saturation was markedly lower and HR was 

significantly higher following acute-high altitude (-18 ± 2% and +21 ± 4 beats∙min
-1

, 
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respectively; P<0.001) and chronic prolonged-high altitude exposure (-16 ± 3% and +18 ± 4 

beats∙min
-1

; P<0.001; Table 1) compared with sea level. Arterial blood pressure, CIMT, CCA 

pulse pressure, CCA distensibilty, CCA wall: lumen ratio, and β-stiffness were unaltered with 

high-altitude exposure (Table 1; Figure 3).  

Compared to sea level, central-PWV was greater following acute-high altitude (9%; +0.6 ± 0.06 

m∙s
-1

; P=0.04) and even more so following chronic-high altitude exposure (13%; +0.8 ± -0.1 m∙s
-

1
; P=0.006; Figure 4). No difference in peripheral-PWV was evident with high-altitude exposure 

(n=11; Figure 4). Compared to sea level, carotid compliance was higher following initial arrival 

to high altitude (by 0.05 ± -0.01 mm
2
∙mm Hg; P=0.006); however, this difference was not 

evident following ~2 weeks of high-altitude exposure (Table 1). Both systolic and diastolic 

diameter of the CCA increased with acute exposure to high altitude, and remained so following 

chronic exposure (~0.5 mm; P≤0.007; Figure 3).  

Compared with sea level, brachial FMD and GTN were reduced by 1.1 ± 0.1% (relative change 

~14%) and 2.4 ± 1.6% (relative ~14%), respectively (P≤0.02; Figure 5) following acute altitude 

exposure. Following ~2 weeks at high altitude, both FMD and GTN remained reduced when 

compared with sea level, by 0.6 ± 0.6% (relative 8%; P=0.01) and 1.8 ± 2.1% (relative 

11%;P=0.06), respectively (Figure 5). Compared with sea level, vasodilator capacity (n=11) 

displayed a trend towards being reduced (P=0.07) by 1.8 ± 2.4 (relative ~14%) and 1.0 ± 2.4 

(relative ~8%) following initial arrival to altitude and following ~2 weeks, respectively. 

Compared with initial arrival to 5050 m, FMD shear rate area under the curve was lower 

following ~2 weeks at altitude (by 81,568 ± 3,856 AUC , P=0.03; Table 1), while no other 

differences were evident across the time spent at 5050 m (Table 1). Compared to sea level, 

allometrically “corrected” FMD was also reduced by 1.2 ± 0% (relative ~15%) and 0.6 ± 0% 

(relative ~8%) following acute and chronic  high altitude exposures, respectively (P≤0.03; Table 

1).  

Markers of oxidative stress and NO bioavailability: Serum LOOH and plasma NO 2  increased in 

lowlanders following acute high-altitude exposure, by 17% (P=0.01) and 72% (P=0.06), 

respectively (see Table 2). A significant negative correlation between LOOH and GTN-induced 

dilation was evident for initial arrival (n=11, r=-0.53; P=0.01) and chronic exposure (n=7, r=-
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0.69; P≤0.001); according to the coefficient of determination, elevations in LOOH statistically 

accounted for 28% and 48% of the decrease in GTN with acute- and chronic-high altitude 

exposure, respectively. Although significance was not reached, a trend for a positive correlation 

between LOOH and central arterial stiffness was also evident following initial arrival to 5050 m 

(r=+0.39; P=0.07). No other correlations were evident. Plasma retinol following initial arrive to 

5050m, showed a 9% increase from sea level; the concentration of the other measured lipid 

soluble antioxidants were significantly unaltered with high altitude exposure (Table 2). 

 

Comparison between lowlanders and native highlanders: Compared with lowlanders at sea level, 

highlanders  had lower mean arterial blood pressure (-10 ± 2 mm Hg; P=0.03), SaO2 (-16 ± 1%; 

P<0.001), CCA pulse pressure (-8 ± 4 mm Hg; P=0.04), and a higher HR (+21 ± 1 beats∙min
-1

; 

P<0.001) and central-PWV (17%; +1.0 ± 0.7 m∙s
-1

; P=0.05; Figure 4); however, once lowlanders 

were exposed to high altitude these between-group differences were not present (Table 1, Figure 

4). Compared with lowlanders at sea level, highlanders systolic and diastolic CCA diameters 

were larger (11%; +0.7 ± 0.1 mm and +0.8 ± 0.2 mm, respectively; P≤0.005; Figure 3), and both 

FMD and GTN dilation displayed a trend of being reduced by 1.6 ± 3.0% (relative ~20%; 

P<0.10) and 3.5 ± 4.7% (relative ~ 21%; P=0.07; Figure 5). However, again these between-group 

differences were absent when lowlanders were exposed to high altitude. In contrast, highlander’s 

wall: lumen ratio was ~19% lower when compared to lowlanders at both sea level and at high 

altitude (P≤0.04; Figure 3). 

 

Study 2 - Normobaric hypoxia and α1-adrenoreceptor blockade 

Time course alterations to hypoxia within the placebo trial: Compared to normoxic baseline (0 

min) SaO2 was reduced and HR was elevated during hypoxic exposure (Table 3). Due to 

technical issues (i.e. loss of one recording), FMD time course related data within the placebo trial 

were obtained in 10 out of the 11 participants.  Compared to normoxic baseline, FMD was 

reduced following 60 min, 210, and 330 min of hypoxia by 1.6 ± 0.2 % (relative 28%), 2.5 ± 0.1 

% and  2.8 ± 0.2 % (relative 36%), respectively (P≤0.003; Figure 6). Although no significant 

difference was evident between normoxic conditions (baseline and 60-min post-hypoxia 
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recovery), FMD was 1.3 ± 0.2 % (relative 16%) higher in normoxic recovery from hypoxia 

exposure.  

The effect of the α1-adrenoreceptor blockade: Two-way repeated measures ANOVA (n=9) 

revealed a significant interaction between time and condition for HR and FMD. Pair t-test 

analysis revealed that compared to the placebo trial, HR and FMD were 5 ± 2 beats∙min
-1

 

(P=0.03; Table 3) and 1.8 ± 1.4 % (relative 35%; P=0.002; Figure 6) higher following α1-

adrenoreceptor blockade after 330 min of hypoxic exposure. 

 

Discussion  

This is the first study to comprehensively examine the time course and potential mechanisms of 

alterations in vascular function and structure in healthy lowland individuals during normobaric 

hypoxia, upon ascent to and following a partial acclimatization to high altitude, and to provide 

relevant comparisons with high-altitude natives. Acute exposure to 5050 m in lowlanders was 

associated with an impairment in both endothelial-dependent (FMD) and endothelial-

independent (GTN) dilatation, and an increase in central-PWV and CCA diameter. These 

changes were neither exacerbated nor resolved with chronic-high altitude exposure. Compared to 

lowlanders at sea level, highlanders had a lower FMD and GTN dilation response, a higher 

central-PWV and a larger CCA diameter. These between-group differences were removed when 

lowlanders were exposed to 5050 m, with only one exception (carotid wall: lumen ratio). In 

lowlanders, we found that alterations in elevations in oxidative stress were partially and 

selectively related to the reductions in GTN-induced vasodilation at 5050 m. In a follow-up 

placebo-controlled experiment conducted in a normobaric hypoxic chamber, we found that 

sustained reductions (-28-36%) in FMD occur within 60 min and could be partially reversed 

following α1-adrenoreceptor blockade. We conclude that high altitude exposure in lowlanders 

was associated with persistent impairment in vascular function, and was potentially mediated via 

oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure does not 

intensify the observed vascular function impairments seen with acute exposure, chronic high-

altitude exposure appears to be associated with altered arterial structure; whether this is an 

adaptive or maladaptive response remains to be established.     
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Influence of high altitude on vascular structure and function in lowlanders: Flow mediated 

dilation, an index of cardiovascular risk(Mullen et al., 2001; Green et al., 2005; Green et al., 

2012; Maruhashi et al., 2013), was reduced by 14% in healthy lowlanders upon initial exposure 

to 5050  m, and did not change following ~2 weeks at this elevation. These findings contrast 

with those reported by Frick et al. (2006), where FMD following 3 weeks at 1700 m was reduced 

by ~49%. However, given the methodological issues discussed above, comparison with this 

study is difficult. Given the comparable brachial baseline diameter and FMD shear stress 

between sea level and arrival to high altitude, the initial reduction in FMD with high altitude 

does not appear to be explained by alterations in diameter or the shear stress stimulus on the 

vessel. Moreover, our findings persisted following allometric scaling to control for variability in 

baseline diameter and therefore, improved specificity and interpretation of the FMD protocol 

(Atkinson & Batterham, 2013; Atkinson et al., 2013).  

We also quantified the peak vasodilatory capacity of the brachial artery, and found this too was 

reduced by 14% at high altitude. This measure is a valid index and surrogate measure for arterial 

structural remodelling (Naylor et al. 2005). The artery dilation associated with the assessment of 

vasodilator capacity in the current study is less dependent on NO than the FMD assessment. For 

example, it has previously been shown that when cuff occlusion is proximal to the site of 

vascular imaging (as used in the current study for testing vasodilator capacity), NO accounts for 

only 40% of the dilation response (Doshi et al., 2001; Green et al., 2012); the degree of shear 

stress and release of multiple vasoactive substances contribute to the additional artery dilation 

(Green et al., 2012). It would seem that a balance of NO and other vasoactive substances, in 

addition to neurogenic factors, underpin the vascular changes observed at high altitude, and are 

considered below.  

 

Potential mechanisms of action for initial reduction in FMD: A positive relationship between 

SaO2 and FMD (r=0.62) has previously been reported, and 100% oxygen inhalation has been 

shown to improve FMD in hypoxemic (SaO2 <90%), but not in normoxemic (SaO2 <90%) 

control participants, suggesting that vascular dysfunction to high altitude, is partly influenced by 

hypoxemia (Rimoldi et al., 2012). In the current study, a similar weak-to-moderate relationship 

was evident between FMD and SaO2 (r=0.33, P=0.05), and calculation of the coefficient of 
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determination indicates that the change in SaO2 potentially explained around 11% of the change 

in FMD; confirming the multifactorial nature of vascular dysfunction and that other 

mechanism(s) are involved in the impairment of FMD at high altitude.  

 

In contrast to our hypothesis, and previous findings (Frick et al., 2006), GTN-induced dilation in 

lowlanders was also reduced at both time points at high altitude. It is accepted that GTN-induced 

dilation provides an index of the maximum obtainable vasodilator response, and represents 

vascular smooth muscle function (Corretti et al., 2002; Maruhashi et al., 2013). This particular 

assessment is used as a control test for FMD measures, as the assessment of FMD is based on the 

premise that endothelium-independent dilation is not altered, and any alterations seen in FMD 

measures is resultant of endothelial dysfunction, and not vascular smooth muscle 

dysfunction(Maruhashi et al., 2013). Given that GTN-dilation and FMD were each reduced by 

~14% with acute exposure to 5050 m, these findings indicate that alterations in vascular smooth 

muscle function and/or structure contributed to the decline in FMD at high altitude. The potential 

mechanism(s) by which ambient hypoxia alters vascular smooth muscle function/structure is 

unknown. Endothelial dysfunction associated with acute hypoxia at sea level, has been 

associated with a reduced NO-bioavailability in both humans (Cosby et al., 2003; Maher et al., 

2008) and rodents (Reboul et al., 2005; Hernandez-Guerra et al., 2013); however, in agreement 

with others (Janocha et al., 2011; Beall et al., 2012) we found that vascular NO bioavailability 

(as indexed by plasma NO
2

) increased with high altitude. Thus, it seems that vascular 

dysfunction clearly cannot be explained by reduced NO bioavailability per se, but is more likely 

related to additional factors including the direct vasculo-toxic/constrictive effects of elevations in 

LOOH, as confirmed by the observed correlation. Consistent with these findings, there is 

evidence to indicate that hypoxic upregulation of superoxide production (Dweik, 2005) 

potentially hinders the intravascular signalling processes in smooth muscle cells required for 

relaxation (e.g., soluble guanylyl cyclase and cGMP-dependent kinase; (Munzel et al., 2003; 

Maruhashi et al., 2013). The elevations in NO at high altitude may well be an adaptive response 

to maintain circulatory homeostasis through both vasodilation and metabolic suppression  

[reviewed in: (Umbrello et al., 2013)]. 
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It is known that hypoxic-induced sympathoexcitation (Saito et al., 1988; Hansen & Sander, 

2003) may potentially modulate functional, and/or mechanical properties of large arteries via an 

increase in vasomotor tone (Hijmering et al., 2002; Dyson et al., 2006; Fok et al., 2012). To 

explore this possibility, we conducted a follow-up study in normobaric hypoxia to examine 

whether a similar reduction in FMD would occur in response to acute normobaric hypoxia, and 

the contributory role of increased sympathetic nerve activity via the α1-adrenoreceptor. Broadly 

consistent with our hypothesis, we found that FMD was markedly reduced in normobaric 

hypoxia (~28-35%). Moreover, following administration of the α1-blockade, these reductions in 

FMD were largely reversed back to normoxic baseline. Thus, our findings clearly support the 

notion that changes in FMD occur early within exposure to hypoxia and are under the influence 

of elevations in sympathetic nerve activity. We acknowledge that differences between 

normobaric and hypobaric hypoxia are possible, and the potential mechanism regulating the 

vascular response to shear stress may also differ. 

 

Arterial stiffness: Lowlanders experienced an 11% increase in central-PWV with high altitude 

exposure, with no change in peripheral-PWV. Carotid to femoral PWV is considered the non-

invasive gold standard measure of arterial stiffness (Laurent et al., 2006), and is influenced by 

the tone of arterial smooth muscle irrespective of the signalling pathway in which it is modulated 

(Fok et al., 2012). Vascular smooth muscle tone is affected by both endothelial cell signalling 

and the sympathetic nervous system (Wilkinson & McEniery, 2004; Bruno et al., 2012). As 

highlighted above, the FMD and GTN findings in the current study support impairment in 

endothelial function and increase in smooth muscle tone, both of which alone or in combination 

may explain our observed increase in central-PWV.  

 

It is important to note that the anatomy of arteries and the extent to which smooth muscle tone 

influences stiffness is not homogenous across the vascular tree, e.g., muscular arteries (radial) 

unlike elastic arteries (carotid) show little stiffening with ageing (Avolio et al., 1985; Stewart et 

al., 2003). Additionally, structural changes can be present without obvious functional changes 

and vice versa (Naghavi, 2009). The results of the current study support this concept. In support 

of arterial differences along the vascular tree with ambient hypoxia, our lowlander group 



20 
 

 

experienced a ~7% increase in CCA diameter at 5050 m, whereas brachial diameter was 

unchanged. Although the regional mechanisms are unknown, the differential effects of hypoxia 

on vessel dilation would seem of physiological benefit in that dilation of the CCA would act to 

redistribute blood flow towards the cerebral vessels to help maintain a normal oxygen flux to the 

brain in the face of arterial hypoxemia (Ainslie & Ogoh, 2010).  

 

Comparisons between lowlanders and highlanders: When compared to lowlanders at sea level, 

we provide evidence of impaired vascular function in highlanders, as indexed by ~20% reduction 

in FMD/ GTN and elevation in central-PWV of ~17%. Interestingly, these observed changes in 

vascular function and central-PWV in natives were remarkably comparable to lowlanders at 

5050 m. These comparable alterations in vascular function indicate that these changes might not 

be dependent on the time spent at high altitude. Compared to lowlanders at both sea level and 

high altitude, highlanders had a significantly lower (~19%) carotid wall: lumen ratio. This 

difference likely reflects the consistently lower CIMT and larger lumen diameter in the 

highlanders.  It is unclear if this difference is reflective of a beneficial adaptation high altitude, or 

the specific mechanism(s) governing this response; however, a smaller wall thickness and larger 

lumen diameter have been reported in individuals following chronic exercise exposure (Rowley 

et al., 2012). It has been suggested that exercise training induces an increase in shear stress and 

transmural pressure (Tuttle et al., 2001; Laughlin et al., 2008; Green et al., 2011); these 

collective changes can increase the circumferential strain placed on the blood vessel and 

stimulate structural arterial remodelling and an anti-atherogenic effect, resulting specifically in 

luminal expansion (Laughlin et al., 2008; Rowley et al., 2012). Although we do not provide 

evidence to support the above concept with high altitude exposure, the increase in carotid 

diameter in lowlanders with high altitude exposure may indicate that arterial remodelling is an 

adaptive response to high altitude.   

 

Perspectives  

The high-altitude induced changes in FMD/GTN dilation and central-PWV in lowlanders and the 

comparison with highlanders has potential clinical relevance. This is especially evidenced in 

native highlanders who have been reported to show earlier cardiovascular degeneration changes 

with aging, in particular arterial wall stiffening (Otsuka et al., 2005). It has been estimated that a 
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1% (absolute) decrease in FMD is associated with a 9% increase in cardiovascular risk  (Green et 

al., 2012); and a 1 m·s
-1

 increase in aortic stiffness (central-PWV) accounts for a 15% increase in 

cardiovascular and all-case mortality (Vlachopoulos et al., 2010). The absolute mean differences 

in FMD and central-PWV between highlanders at high altitude and lowlanders at sea level were 

1.6% and 1.0 m·s
-1

, respectively; and the absolute change in lowlanders upon exposure to high 

altitude from sea level was 0.9% and 0.7 m·s
-1

. These findings indicate that: 1) natives to high 

altitude are at greater risk of advanced vascular aging, due to impairment in endothelial and 

smooth muscle function; thus, lifelong adaption to high altitude does not appear to provide any 

functional cardioprotective benefits; and 2) the vascular alterations/adaptions in vascular 

endothelial and smooth muscle function with high-altitude exposure are significant enough to 

induce an increase in cardiovascular risk in healthy lowlanders. These findings may be 

particularly relevant to ‘at-risk’ populations who ascend to high altitude (e.g. patients with sleep 

apnoea, heart failure, lung disease, etc.). The potential risk and level of altitude required to 

induce adverse changes in vascular function remains to be established.  

Methodological considerations  

Due to the nature of high-altitude research, our sample size was relatively small. Nevertheless, 

clear significant differences were evident, indicating that additional numbers would be unlikely 

to alter our findings. An important consideration in the assessment of FMD in cross-sectional 

and longitudinal studies is that of consistency in the brachial baseline diameter and shear-stress 

stimulus and related normalisation (Atkinson et al., 2009; Green et al., 2012). Following ~2 

weeks at 5050 m, FMD was unaltered compared to initial arrival to high altitude. It is important 

to highlight that compared to initial exposure at 5050 m, the SR area under the curve stimulus 

influencing the FMD response was reduced by ~40% following the prolonged stay at 5050 m. 

Despite this marked reduction in shear stress, the FMD reduction was markedly consistent across 

time at high altitude. Whether or not these changes in SR area under the curve reflect a subtle 

functional improvement in vascular function is unclear. In addition, the changes in FMD 

persisted following allometric scaling to control for variability in baseline diameter.  

Although logistically difficult in field conditions or prolonged laboratory studies, complimentary 

measures of sympathetic nerve activity either via noradrenaline concentrations or muscle 

sympathetic nerve activity would have added to mechanistic interpretation to our findings. It is 



22 
 

 

also known that physical fitness influences the brachial baseline diameter and hence FMD 

response (Green et al., 2013). Although there were no significant differences in brachial baseline 

diameter between conditions (e.g., time at altitude) or groups (e.g., lowlanders vs. highlanders), 

complementary measures of cardiorespiratory fitness may have been useful.   

It has been reported that a linear relationship exists between central-PWV in elderly individuals 

with cardiovascular disease and HR when >70 beats∙min
-1

 (Lantelme et al., 2002). For example, 

a 6 beats∙min
-1

 increase in HR above 70 beats∙min
-1

 corresponds to a <0.3 m∙s
-1

 increase in 

central-PWV (Stewart et al., 2003). How relevant these findings are to an otherwise young, non-

cardiovascular-diseased population is currently unknown, and the translation to the current study 

is questionable given that the lowest central-PWV reported by Lantelme et al. (2002) at a HR of 

~60 beats∙min
-1

 was double that present in the current study in healthy lowlanders free of overt 

cardiovascular disease even when exposed to the vascular stress associated with high altitude. As 

anticipated, the peak HR in the current study occurred following acute exposure to 5050m (77 

beats∙min
-1

) and was reduced over 2-3 weeks to 73 beats∙min
-1

. Because the mean difference in 

central-PWV between sea level and acute-high altitude was 0.6 m∙s
-1

 (which persisted over time 

despite reductions in HR), it is possible that HR may have contributed up to half of the increase 

seen in central-PWV with acute-altitude exposure; however, given that the increase in central-

PWV persisted with chronic exposure, when HR had declined, it seem other mechanisms 

influenced the changes in central-PWV with high altitude. Additionally, we would have expected 

small changes in blood viscosity and haemoconcentration over 2 weeks at altitude (Lucas et al., 

2011), however, such changes would appear to have a negligible impact on vascular function 

measures including FMD, PWV and carotid compliance (Parkhurst et al., 2012); therefore, we 

feel that changes in blood viscosity are unlikely to explain our findings within or between 

groups.  

 

Although we provided some insight into the role of oxidative stress and NO as potential 

mechanisms of vascular dysfunction, we were unable to collect these blood markers in the high 

altitude natives. As such, we do not know if similar changes and relationships may also be 

evident in this group.  It is also important to acknowledge that evidence exists to indicate that 

highland groups with different evolutionary histories, e.g. Andean and Tibetan populations, 

differ from one another genetically, resulting in different adaptation responses to hypoxia (Beall, 



23 
 

 

2007; Bailey et al., 2013). Therefore, as Tibetan highlanders were selected in the current study, 

caution is needed when comparing or interpreting the results of the current study with Andean 

populations. Further research is needed to explore vascular function in different highland groups.  

 

Conclusion  

Our findings are the first to show that vascular function alterations in healthy lowlanders during 

high altitude exposure are potentially attributed to impairment in both endothelial and vascular 

smooth muscle function, associated with an increase in central arterial stiffness. The mechanisms 

underpinning the changes in vascular function with hypoxia seem to be related at least partly to 

elevations in oxidative stress and sympathetic nerve activity. It appears that the effects of 

ambient hypoxia on the vascular tree are not uniform, and that a lifetime of high altitude 

exposure neither exacerbates nor protects against the vascular function impairments seen 

following arrival to high altitude. In contrast, highland Sherpa had a consistently lower carotid 

wall: lumen ratio than did lowlanders at sea level and high altitude; these findings potentially 

indicate that arterial remodelling is an adaptive response to chronic high altitude. The extent to 

which these changes may potentially translate into an elevated cardiovascular risk remained to be 

determined.  
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Tables 

 

Table 1: The effect of high altitude (5050 m) on cardiovascular variables in lowlanders and comparison with highlanders.    

Group  Lowlanders    Highlanders 

Location/altitude duration Sea level Acute-HA Chronic-HA Lifelong-HA 

SBP (mm Hg) 118 ± 7 119 ± 9 115 ± 9 106 ± 16 

DBP (mm Hg) 77 ± 7 73 ± 9 72 ± 9 72 ± 10 

MAP (mm Hg) 94 ± 10 86 ± 8 87 ± 7 83 ± 11 ‡ 

HR (beats∙min
-1

) 56 ± 10 77 ± 15 * 73 ± 15 * 77 ± 11 ‡ 

SaO2 (%) 99 ± 1 81 ± 3 * 83 ± 4 * 83 ± 2 ‡ 

Carotid compliance cm
2
/mmHg 0.17 ± 0.04 0.22 ± 0.03 * 0.19 ± 0.04 0.22 ± 0.08 

Carotid distensibilty mmHg
−1

 0.006 ± 0.001 0.006 ± 0.002 0.005 ± 0.001 0.006 ± 0.003 

β stiffness 4.5 ± 1.2 4.2 ± 1.2 4.5 ± 0.7 4.8 ± 2.0 

Carotid pulse pressure (mm Hg) 37 ± 7 32 ± 6 34 ± 6 30 ± 11 ‡ 

FMD     

Baseline diameter (mm) 4.2 ± 0.5 4.2 ± 0.5 4.1 ± 0.5 4.6 ± 0.5 

Peak diameter (mm) 4.4 ± 0.5 4.5 ± 0.6 4.4 ± 0.5 4.9 ± 0.5 

Time to peak (s) 60 ± 24 62 ± 20 59 ± 16 68 ± 21 

SRAUC (AUC) 20327 ± 5401 22961 ± 9163 14802 ± 5306 † 24490 ± 7230 
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Allometrically corrected FMD (%) 7.9 ± 1.4 6.7 ± 1.4 7.3 ± 1.4 6.7 ± 2.1 

GTN     

Baseline diameter (mm) 4.2 ± 0.5 4.4 ± 0.6 4.2 ± 0.5 4.6 ± 0.7 

Peak diameter (mm) 4.9 ± 0.5 4.9 ± 0.6 4.9 ± 0.5 5.3 ± 0.7 

Time to peak (s) 365 ± 56 372 ± 104 338 ± 70 368 ± 46 

FMD:GTN ratio 0.49 ± 0.12 0.49 ± 0.15 0.50 ± 0.14 0.49 ± 0.13 

VD     

Baseline diameter (mm) 4.1 ± 0.4 4.0 ± 0.4     4.0 ± 0.5  

Peak diameter (mm) 4.6 ± 0.4 4.4 ± 0.4 4.5 ± 0.5  

Time to peak (s) 97 ± 32 90 ± 31 105 ± 36  

SRAUC (AUC) 61089 ± 45870 63078 ± 25056 51850 ± 21826  

 

Values expressed as mean ± SD. HA, high altitude; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial 

blood pressure; HR, heart rate; SaO2, arterial oxygen saturation; CIMT, carotid intima media thickness; FMD, flow mediated dilation; 

GTN, glyceryl trinitrate, VD, vasodilator capacity; shear rate area under the curve (SRAUC). Different probe placement between FMD 

and VD test due to distal and proximal cuff placement. * Lowlanders at acute (days 2-3) and chronic-high altitude (days 12-14) are 

significantly different from sea level, P<0.001; † Chronic-high altitude significantly different from acute-high altitude in lowlanders 

(P=0.03); ‡ Highlanders significantly different from lowlanders at sea level (P=0.04).)…………………………………………………



Table 2: Markers of oxidative stress and nitric oxide, at sea level and following acute (day 1) 

and chronic (7 days) exposure to high altitude in lowlanders. 

 

Metabolites Sea Level (n=11) Acute-HA (n=11) Chronic-HA (n=7) 

Lipid hydroperoxides (µM) 1.87 ± 0.46 2.20 ± 0.67 *  2.14 ± 0.75 † 

Nitrite (nM) 212 ± 77 283 ± 136 † 304 ± 57 † 

-tocopherol (µM) 16.83 ± 3.91 15.56 ± 5.21 14.25 ± 3.12 

γ-tocopherol (µM) 1.75 ± 0.86 2.37 ± 0.89 3.49 ± 2.32 

-carotene (µM) 0.154 ± 0.092 0.141 ± 0.093 0.135 ± 0.119 

β-carotene (µM) 0.465 ± 0.367 0.430 ± 0.404 0.320 ± 0.347 

Retinol (µM) 1.77 ± 0.44 1.61 ± 0.45* 1.75 ± 0.86 

Lycopene (µM) 1.00 ± 0.38 0.91 ± 0.45 1.14 ± 0.81 

Zexanthin (µM) 0.054 ± 0.025 0.056 ± 0.026 0.044 ± 0.014 

Lutein (µM) 0.199 ± 0.121 0.187 ± 0.136 0.357 ± 0.632 

β-cryptoxanthin (µM) 0.084 ± 0.038 0.071 ± 0.032 0.054 ± 0.027 

 

Values expressed as mean ± SD. HA, high altitude. * Acute-HA significant different from sea 

level (n=11, paired t-test: P≤0.03). † Acute- and chronic-HA significant different from sea level 

(n=7, one-way ANOVA: P≤0.05).



Table 3: The time course effect of normobaric hypoxia on cardiovascular variables and effect of α1-blockade.  

 Inspirate Normoxia  Hypoxia  Normoxia 

Time (min)  0 60 220 330 60 

SBP (mm Hg) Placebo 114 ± 11 121 ± 26 109 ± 9 109 ± 8 112 ± 13 

 α1-blockade 109 ± 8 111 ± 8 116 ± 17 108 ± 12 113 ± 7 

DBP (mm Hg) Placebo 76 ± 10 71 ± 10 70 ± 10 74 ± 9 74 ± 9 

 α1-blockade 72 ± 8 71 ± 10 72 ± 12 65 ± 12 70 ± 10 

MAP (mm Hg) Placebo 90 ± 9 88 ± 7 83 ± 8 86 ± 7  87 ± 9  

 α1-blockade 83 ± 10 ‡ 85 ± 9 79 ± 14 80 ± 8  84 ± 8  

HR (beats∙min
-1

) Placebo 59 ± 10 68 ± 15  72 ± 15  72 ± 15 *† 60 ± 14  

 α1-blockade 61 ± 9 66 ± 9  66 ± 8  77 ± 13 ‡  65 ± 10  

SaO2 (%) Placebo 96 ± 2 72 ± 5 *† 76 ± 7 *† 80 ± 4 *† 97 ± 1  

 α1-blockade 96 ± 1 79 ± 7  81 ± 6  79 ± 7  97 ± 1  

FMD 
      

Baseline diameter (mm) Placebo 4.5 ± 0.4 4.5 ± 0.5 4.7 ± 0.6 † 4.5 ± 0.5 4.3 ± 0.5 

 α1-blockade 4.4 ± 0.5 4.5 ± 0.6 4.5 ± 0.4  4.6 ± 0.6 4.4 ± 0.5 

Peak diameter (mm) Placebo 4.8 ± 0.5 4.8 ± 0.6 4.8 ± 0.5 4.7 ± 0.5 4.6 ± 0.5 

 α1-blockade 4.7 ± 0.5 4.7 ± 0.6 4.8 ± 0.4 4.9 ± 0.6 4.8 ± 0.5 

Time to peak (s) Placebo 49 ± 17 46 ± 18 47 ± 20 54 ± 23 45 ± 12 

 α1-blockade 56 ± 21 50 ± 18 54 ± 25 61 ± 23 54 ± 18 

SRAUC (AUC) Placebo 22727 ± 6813 17847 ± 7468 20745 ± 13011  20142 ± 11799 22543 ± 6110 

 α1-blockade 23423 ± 11423 21498 ± 9124 22464 ± 11424  24043 ± 10701 25234 ± 11027 
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Values expressed as mean ± SD. SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial blood pressure; HR, 

heart rate; SaO2, arterial oxygen saturation; FMD, flow mediated dilation; SRAUC, shear rate area under the curve. * Significantly 

different from normoxia 0 min (baseline) in the placebo trial only. † Significantly different from normoxia 60 (recovery) in the 

placebo trial only (P≤0.001). ‡ Measurement time point in the α1-blockade trial significantly different from placebo trial (P≤0.03). 

Placebo vs. blockade at hypoxic time points 60 min and 120 min, n =10.  



Figures and Legends  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic detailing experimental schedule for lowlander in study 1 (A) and study 2 

(B). In study A, measures were completed at sea level, upon initial arrival at high altitude (5050 

m; day 3) and following 12-14 days of partial acclimatisation at 5050 m.  In the follow-up study 

B, measures were completed in normoxia, prior to a 6 hr exposure of normobaric hypoxia 

(FIO2=0.11). Measures were repeated following 60 min, 210 min 330 min of hypoxia.  

Following 240 min of hypoxia (90 min prior to the last assessment in hypoxia [330 min]), 

participants orally consumed the α1-adrenoreceptor blocker, prazosin (1 mg/20 kg body mass) or 

placebo capsule. All measures were repeated in normoxia 60 min following the hypoxic 

exposure. 
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Figure 2: Illustration of ultrasound images and analysis techniques for: A, brachial flow 

mediated dilation (custom-designed edge-detection and wall-tracking software was used to 

obtain simultaneous measure of diameter and flow). B, beat-to-beat common carotid diameter 

(custom-designed edge-detection and wall-tracking software was used to obtain beat-to-beat 

diameter). C, common carotid intima-media thickness (CIMT: commercial edge-detection 

software (EchoPAC PC, GE Healthcare) was used to measure CIMT across consecutive cardiac 

cycles). 
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Figure 3: Carotid intima-medial thickness (IMT), carotid systolic and diastolic diameter, and 

carotid wall: lumen ratio in lowlanders at sea level (SL), acute-high altitude (A-HA) and 

following chronic-high altitude (C-HA), and comparison to highlanders at high altitude (5050 

m). * Significantly different from sea level (P≤0.02). † ‡ § Highlanders were significantly 

different from lowlanders at sea level, acute-high altitude and chronic-high altitude, respectively 

(P≤0.04). 
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Figure 4: Central and peripheral pulse wave velocity (PWV) in lowlanders at sea level (SL), 

acute-high altitude (A-HA) and following chronic-high altitude (P-HA), and with comparison to 

highlanders at high altitude (5050 m). * Significantly different from sea level (P≤0.04). † 

Highlanders significantly different from lowlanders at sea level (P=0.05). 
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Figure 5: Brachial flow mediated dilation (FMD), vasodilator capacity (VD) and glyceryl 

trinitrate (GTN) in lowlanders at sea level (SL), acute-high altitude (A-HA) and following 

chronic-high altitude (C-HA), and with comparison to highlanders at 5050 m. * Significantly 

different from sea level (P≤0.02). 
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Figure 6: Changes in flow mediated dilation (FMD) during normobaric hypoxia and the effect of 

α1-blockade. * Significantly different from normoxia 0 min (baseline) in the placebo trial only. † 

Normoxia 60 (recovery) significantly different from hypoxic measures in the placebo trial only 

(P≤0.001). ‡ Measurement at 330 min time point in the α1-blockade trial significantly different 

from placebo trial (P≤0.03). 

 

   


