41 research outputs found
The impact of outpatient <i>versus</i> inpatient management on health-related quality of life outcomes for patients with malignant pleural effusion: the OPTIMUM randomised clinical trial
Background: The principal aim of malignant pleural effusion (MPE) management is to improve health-related quality of life (HRQoL) and symptoms.Methods: In this open-label randomised controlled trial, patients with symptomatic MPE were randomly assigned to either indwelling pleural catheter (IPC) insertion with the option of talc pleurodesis or chest drain and talc pleurodesis. The primary end-point was global health status, measured with the 30-item European Organisation for Research and Treatment of Cancer Quality of Life Core Questionnaire (EORTC QLQ-C30) at 30 days post-intervention. 142 participants were enrolled from July 2015 to December 2019.Results: Of participants randomly assigned to the IPC (n=70) and chest drain (n=72) groups, primary outcome data were available in 58 and 56 patients, respectively. Global health status improved in both groups at day 30 compared with baseline: IPC (mean difference 13.11; p=0.001) and chest drain (mean difference 10.11; p=0.001). However, there was no significant between-group difference at day 30 (mean intergroup difference in baseline-adjusted global health status 2.06, 95% CI −5.86–9.99; p=0.61), day 60 or day 90. No significant differences were identified between groups in breathlessness and chest pain scores. All chest drain arm patients were admitted (median length of stay 4 days); seven patients in the IPC arm required intervention-related hospitalisation.Conclusions: While HRQoL significantly improved in both groups, there were no differences in patient-reported global health status at 30 days. The outpatient pathway using an IPC was not superior to inpatient treatment with a chest drain
Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
SummaryBackground Lopinavir–ritonavir has been proposed as a treatment for COVID-19 on the basis of in vitro activity,preclinical studies, and observational studies. Here, we report the results of a randomised trial to assess whether lopinavir–ritonavir improves outcomes in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, platform trial, a range of possible treatments was compared with usual care in patients admitted to hospital with COVID-19. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients were randomly allocated to either usual standard of care alone or usual standard of care plus lopinavir–ritonavir (400 mg and 100 mg, respectively) by mouth for 10 days or until discharge (or one of the otherRECOVERY treatment groups: hydroxychloroquine, dexamethasone, or azithromycin) using web-based simple (unstratified) randomisation with allocation concealment. Randomisation to usual care was twice that of any of the active treatment groups (eg, 2:1 in favour of usual care if the patient was eligible for only one active group, 2:1:1 if the patient was eligible for two active groups). The primary outcome was 28-day all-cause mortality. Analyses weredone on an intention-to-treat basis in all randomly assigned participants. The trial is registered with ISRCTN,50189673, and ClinicalTrials.gov, NCT04381936.Findings Between March 19, 2020, and June 29, 2020, 1616 patients were randomly allocated to receive lopinavir–ritonavir and 3424 patients to receive usual care. Overall, 374 (23%) patients allocated to lopinavir–ritonavir and 767 (22%) patients allocated to usual care died within 28 days (rate ratio 1·03, 95% CI 0·91–1·17; p=0·60). Resultswere consistent across all prespecified subgroups of patients. We observed no significant difference in time until discharge alive from hospital (median 11 days [IQR 5 to >28] in both groups) or the proportion of patients discharged from hospital alive within 28 days (rate ratio 0·98, 95% CI 0·91–1·05; p=0·53). Among patients not on invasive mechanical ventilation at baseline, there was no significant difference in the proportion who met the composite endpoint of invasive mechanical ventilation or death (risk ratio 1·09, 95% CI 0·99–1·20; p=0·092).Interpretation In patients admitted to hospital with COVID-19, lopinavir–ritonavir was not associated with reductions in 28-day mortality, duration of hospital stay, or risk of progressing to invasive mechanical ventilation or death. These findings do not support the use of lopinavir–ritonavir for treatment of patients admitted to hospital with COVID-19.Funding Medical Research Council and National Institute for Health Research
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY) : a randomised, controlled, open-label, platform trial
Funding UK Research and Innovation (Medical Research Council) and National Institute for Health and Care Research (Grant ref: MC_PC_19056). Acknowledgements Above all, we would like to thank the patients who participated in this trial. We would also like to thank the many doctors, nurses, pharmacists, other allied health professionals, and research administrators at NHS hospital organisations across the whole of the UK, supported by staff at the National Institute of Health Research (NIHR) Clinical Research Network, NHS DigiTrials, Public Health England, Department of Health & Social Care, the Intensive Care National Audit & Research Centre, Public Health Scotland, National Records Service of Scotland, the Secure Anonymised Information Linkage (SAIL) at University of Swansea, and the NHS in England, Scotland, Wales and Northern Ireland. The RECOVERY trial is supported by grants to the University of Oxford from UK Research and Innovation (UKRI) and NIHR (MC_PC_19056), the Wellcome Trust (Grant Ref: 222406/Z/20/Z) through the COVID-19 Therapeutics Accelerator, and by core funding provided by the NIHR Oxford Biomedical Research Centre, the Wellcome Trust, the Bill and Melinda Gates Foundation, the Foreign, Commonwealth and Development Office, Health Data Research UK, the Medical Research Council Population Health Research Unit, the NIHR Health Protection Unit in Emerging and Zoonotic Infections, and NIHR Clinical Trials Unit Support Funding. TJ is supported by a grant from UK Medical Research Council (MC_UU_0002/14). WSL is supported by core funding provided by NIHR Nottingham Biomedical Research Centre. Tocilizumab was provided free of charge for this trial by Roche Products Limited. Regeneron Pharmaceuticals supported the trial through provision of casirivimab and imdevimab. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR, or the UK Department of Health and Social Care. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. The sponsor was not involved in study design, data collection and analysis or manuscript writing.Peer reviewe
Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19
BACKGROUND Hydroxychloroquine and chloroquine have been proposed as treatments for coronavirus disease 2019 (Covid-19) on the basis of in vitro activity and data from uncontrolled studies and small, randomized trials. METHODS In this randomized, controlled, open-label platform trial comparing a range of possible treatments with usual care in patients hospitalized with Covid-19, we randomly assigned 1561 patients to receive hydroxychloroquine and 3155 to receive usual care. The primary outcome was 28-day mortality. RESULTS The enrollment of patients in the hydroxychloroquine group was closed on June 5, 2020, after an interim analysis determined that there was a lack of efficacy. Death within 28 days occurred in 421 patients (27.0%) in the hydroxychloroquine group and in 790 (25.0%) in the usual-care group (rate ratio, 1.09; 95% confidence interval [CI], 0.97 to 1.23; P = 0.15). Consistent results were seen in all prespecified subgroups of patients. The results suggest that patients in the hydroxychloroquine group were less likely to be discharged from the hospital alive within 28 days than those in the usual-care group (59.6% vs. 62.9%; rate ratio, 0.90; 95% CI, 0.83 to 0.98). Among the patients who were not undergoing mechanical ventilation at baseline, those in the hydroxychloroquine group had a higher frequency of invasive mechanical ventilation or death (30.7% vs. 26.9%; risk ratio, 1.14; 95% CI, 1.03 to 1.27). There was a small numerical excess of cardiac deaths (0.4 percentage points) but no difference in the incidence of new major cardiac arrhythmia among the patients who received hydroxychloroquine. CONCLUSIONS Among patients hospitalized with Covid-19, those who received hydroxychloroquine did not have a lower incidence of death at 28 days than those who received usual care
Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis
Background: We aimed to evaluate the use of baricitinib, a Janus kinase (JAK) 1–2 inhibitor, for the treatment of patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple possible treatments in patients hospitalised with COVID-19 in the UK. Eligible and consenting patients were randomly allocated (1:1) to either usual standard of care alone (usual care group) or usual care plus baricitinib 4 mg once daily by mouth for 10 days or until discharge if sooner (baricitinib group). The primary outcome was 28-day mortality assessed in the intention-to-treat population. A meta-analysis was done, which included the results from the RECOVERY trial and all previous randomised controlled trials of baricitinib or other JAK inhibitor in patients hospitalised with COVID-19. The RECOVERY trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936) and is ongoing. Findings: Between Feb 2 and Dec 29, 2021, from 10 852 enrolled, 8156 patients were randomly allocated to receive usual care plus baricitinib versus usual care alone. At randomisation, 95% of patients were receiving corticosteroids and 23% were receiving tocilizumab (with planned use within the next 24 h recorded for a further 9%). Overall, 514 (12%) of 4148 patients allocated to baricitinib versus 546 (14%) of 4008 patients allocated to usual care died within 28 days (age-adjusted rate ratio 0·87; 95% CI 0·77–0·99; p=0·028). This 13% proportional reduction in mortality was somewhat smaller than that seen in a meta-analysis of eight previous trials of a JAK inhibitor (involving 3732 patients and 425 deaths), in which allocation to a JAK inhibitor was associated with a 43% proportional reduction in mortality (rate ratio 0·57; 95% CI 0·45–0·72). Including the results from RECOVERY in an updated meta-analysis of all nine completed trials (involving 11 888 randomly assigned patients and 1485 deaths) allocation to baricitinib or another JAK inhibitor was associated with a 20% proportional reduction in mortality (rate ratio 0·80; 95% CI 0·72–0·89; p<0·0001). In RECOVERY, there was no significant excess in death or infection due to non-COVID-19 causes and no significant excess of thrombosis, or other safety outcomes. Interpretation: In patients hospitalised with COVID-19, baricitinib significantly reduced the risk of death but the size of benefit was somewhat smaller than that suggested by previous trials. The total randomised evidence to date suggests that JAK inhibitors (chiefly baricitinib) reduce mortality in patients hospitalised for COVID-19 by about one-fifth. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Background: We aimed to evaluate the use of baricitinib, a Janus kinase (JAK) 1–2 inhibitor, for the treatment of patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple possible treatments in patients hospitalised with COVID-19 in the UK. Eligible and consenting patients were randomly allocated (1:1) to either usual standard of care alone (usual care group) or usual care plus baricitinib 4 mg once daily by mouth for 10 days or until discharge if sooner (baricitinib group). The primary outcome was 28-day mortality assessed in the intention-to-treat population. A meta-analysis was done, which included the results from the RECOVERY trial and all previous randomised controlled trials of baricitinib or other JAK inhibitor in patients hospitalised with COVID-19. The RECOVERY trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936) and is ongoing. Findings: Between Feb 2 and Dec 29, 2021, from 10 852 enrolled, 8156 patients were randomly allocated to receive usual care plus baricitinib versus usual care alone. At randomisation, 95% of patients were receiving corticosteroids and 23% were receiving tocilizumab (with planned use within the next 24 h recorded for a further 9%). Overall, 514 (12%) of 4148 patients allocated to baricitinib versus 546 (14%) of 4008 patients allocated to usual care died within 28 days (age-adjusted rate ratio 0·87; 95% CI 0·77–0·99; p=0·028). This 13% proportional reduction in mortality was somewhat smaller than that seen in a meta-analysis of eight previous trials of a JAK inhibitor (involving 3732 patients and 425 deaths), in which allocation to a JAK inhibitor was associated with a 43% proportional reduction in mortality (rate ratio 0·57; 95% CI 0·45–0·72). Including the results from RECOVERY in an updated meta-analysis of all nine completed trials (involving 11 888 randomly assigned patients and 1485 deaths) allocation to baricitinib or another JAK inhibitor was associated with a 20% proportional reduction in mortality (rate ratio 0·80; 95% CI 0·72–0·89; p<0·0001). In RECOVERY, there was no significant excess in death or infection due to non-COVID-19 causes and no significant excess of thrombosis, or other safety outcomes. Interpretation: In patients hospitalised with COVID-19, baricitinib significantly reduced the risk of death but the size of benefit was somewhat smaller than that suggested by previous trials. The total randomised evidence to date suggests that JAK inhibitors (chiefly baricitinib) reduce mortality in patients hospitalised for COVID-19 by about one-fifth. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Clinical effectiveness and cost-effectiveness results from the randomised controlled Trial of Oral Mandibular Advancement Devices for Obstructive sleep apnoea–hypopnoea (TOMADO) and long-term economic analysis of oral devices and continuous positive airway pressure
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
