57 research outputs found

    An Open Letter to Naval War College Courses

    Get PDF
    What does the future hold for Naval War College course being made available to Reserve officers through the Naval Reserve officers through the Naval Reserve Officers Schools (NROS)? I\u27ll try to answer this question balancing a crystal ball in one hand and nine years of NROS-Naval War College course experience in the other

    Enhancing Transparency and Control when Drawing Data-Driven Inferences about Individuals

    Get PDF
    Recent studies have shown that information disclosed on social network sites (such as Facebook) can be used to predict personal characteristics with surprisingly high accuracy. In this paper we examine a method to give online users transparency into why certain inferences are made about them by statistical models, and control to inhibit those inferences by hiding ("cloaking") certain personal information from inference. We use this method to examine whether such transparency and control would be a reasonable goal by assessing how difficult it would be for users to actually inhibit inferences. Applying the method to data from a large collection of real users on Facebook, we show that a user must cloak only a small portion of her Facebook Likes in order to inhibit inferences about their personal characteristics. However, we also show that in response a firm could change its modeling of users to make cloaking more difficult.Comment: presented at 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, N

    Enhancing Transparency and Control when Drawing Data-Driven Inferences about Individuals

    Get PDF
    Recent studies show the remarkable power of information disclosed by users on social network sites to infer the users' personal characteristics via predictive modeling. In response, attention is turning increasingly to the transparency that sites provide to users as to what inferences are drawn and why, as well as to what sort of control users can be given over inferences that are drawn about them. We draw on the evidence counterfactual as a means for providing transparency into why particular inferences are drawn about them. We then introduce the idea of a \cloaking device" as a vehicle to provide (and to study) control. Specifically, the cloaking device provides a mechanism for users to inhibit the use of particular pieces of information in inference; combined with the transparency provided by the evidence counterfactual a user can control model-driven inferences, while minimizing the amount of disruption to her normal activity. Using these analytical tools we ask two main questions: (1) How much information must users cloak in order to significantly affect inferences about their personal traits? We find that usually a user must cloak only a small portion of her actions in order to inhibit inference. We also find that, encouragingly, false positive inferences are significantly easier to cloak than true positive inferences. (2) Can firms change their modeling behavior to make cloaking more difficult? The answer is a definitive yes. In our main results we replicate the methodology of Kosinski et al. (2013) for modeling personal traits; then we demonstrate a simple modeling change that still gives accurate inferences of personal traits, but requires users to cloak substantially more information to affect the inferences drawn. The upshot is that organizations can provide transparency and control even into complicated, predictive model-driven inferences, but they also can make modeling choices to make control easier or harder for their users.Columbia University, New York University, NYU Stern School of Business, NYU Center for Data Scienc

    Enhancing Transparency and Control when Drawing Data-Driven Inferences about Individuals

    Get PDF
    Abstract Recent studies show the remarkable power of information disclosed by users on social network sites to infer the users' personal characteristics via predictive modeling. In response, attention is turning increasingly to the transparency that sites provide to users as to what inferences are drawn and why, as well as to what sort of control users can be given over inferences that are drawn about them. We draw on the evidence counterfactual as a means for providing transparency into why particular inferences are drawn about them. We then introduce the idea of a "cloaking device" as a vehicle to provide (and to study) control. Specifically, the cloaking device provides a mechanism for users to inhibit the use of particular pieces of information in inference; combined with the transparency provided by the evidence counterfactual a user can control model-driven inferences, while minimizing the amount of disruption to her normal activity. Using these analytical tools we ask two main questions: (1) How much information must users cloak in order to significantly affect inferences about their personal traits? We find that usually a user must cloak only a small portion of her actions in order to inhibit inference. We also find that, encouragingly, false positive inferences are significantly easier to cloak than true positive inferences. gives accurate inferences of personal traits, but requires users to cloak substantially more information to affect the inferences drawn. The upshot is that organizations can provide transparency and control even into complicated, predictive model-driven inferences, but they also can make modeling choices to make control easier or harder for their users

    Refractoriness of hepatitis C virus internal ribosome entry site to processing by Dicer in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) is a positive-strand RNA virus harboring a highly structured internal ribosome entry site (IRES) in the 5' nontranslated region of its genome. Important for initiating translation of viral RNAs into proteins, the HCV IRES is composed of RNA structures reminiscent of microRNA precursors that may be targeted by the host RNA silencing machinery.</p> <p>Results</p> <p>We report that HCV IRES can be recognized and processed into small RNAs by the human ribonuclease Dicer in vitro. Furthermore, we identify domains II, III and VI of HCV IRES as potential substrates for Dicer in vitro. However, maintenance of the functional integrity of the HCV IRES in response to Dicer overexpression suggests that the structure of the HCV IRES abrogates its processing by Dicer in vivo.</p> <p>Conclusion</p> <p>Our results suggest that the HCV IRES may have evolved to adopt a structure or a cellular context that is refractory to Dicer processing, which may contribute to viral escape of the host RNA silencing machinery.</p

    Carbon sequestration in the deep Atlantic enhanced by Saharan dust

    Get PDF
    Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles

    Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information

    Get PDF
    Funding Information: This work was supported by the National Institute of Mental Health / U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium ), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience . Statistical analyses were carried out on the LISA/Genetic Cluster Computer ( https://userinfo.surfsara.nl/systems/lisa ) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. Funding Information: MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc., RallyPoint Networks, Inc., Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled “Genotype-guided dosing of opioid agonists,” filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Funding Information: This work was supported by the National Institute of Mental Health/ U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience. Statistical analyses were carried out on the LISA/Genetic Cluster Computer (https://userinfo.surfsara.nl/systems/lisa) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. This material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting true views of the U.S. Department of the Army or the Department of Defense. We thank the investigators who comprise the PGC-PTSD working group and especially the more than 206,000 research participants worldwide who shared their life experiences and biological samples with PGC-PTSD investigators. We thank Mark Zervas for his critical input. Full acknowledgments are in Supplement 1. MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc. RallyPoint Networks, Inc. Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled ?Genotype-guided dosing of opioid agonists,? filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Publisher Copyright: © 2021 Society of Biological PsychiatryBackground: Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide association studies (GWASs). Methods: A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms. Results: GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million Veteran Program. Conclusions: Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to increase discovery power through multivariate methods.publishersversionpublishe

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species‐level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity
    corecore