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Abstract

Recent studies show the remarkable power of information disclosed by users on so-

cial network sites to infer the users’ personal characteristics via predictive modeling.

In response, attention is turning increasingly to the transparency that sites provide to

users as to what inferences are drawn and why, as well as to what sort of control users

can be given over inferences that are drawn about them. We draw on the evidence

counterfactual as a means for providing transparency into why particular inferences

are drawn about them. We then introduce the idea of a “cloaking device” as a ve-

hicle to provide (and to study) control. Specifically, the cloaking device provides a

mechanism for users to inhibit the use of particular pieces of information in inference;

combined with the transparency provided by the evidence counterfactual a user can

control model-driven inferences, while minimizing the amount of disruption to her nor-

mal activity. Using these analytical tools we ask two main questions: (1) How much

information must users cloak in order to significantly affect inferences about their per-

sonal traits? We find that usually a user must cloak only a small portion of her actions

in order to inhibit inference. We also find that, encouragingly, false positive inferences

are significantly easier to cloak than true positive inferences. (2) Can firms change

their modeling behavior to make cloaking more difficult? The answer is a definitive

yes. In our main results we replicate the methodology of Kosinski et al. (2013) for

modeling personal traits; then we demonstrate a simple modeling change that still
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gives accurate inferences of personal traits, but requires users to cloak substantially

more information to affect the inferences drawn. The upshot is that organizations can

provide transparency and control even into complicated, predictive model-driven infer-

ences, but they also can make modeling choices to make control easier or harder for

their users.

1 Introduction

Successful pricing strategies, marketing campaigns, and political campaigns depend on the

ability to optimally target customers or voters. This generates incentives for firms and

governments to acquire and exploit information related to people’s personal characteristics,

such as their gender, marital status, religion, sexual or political orientation. The boom in

availability of online data has accentuated efforts to do so. However, personal characteristics

often are hard to determine with certainty because of privacy restrictions. As a result, online

marketers find themselves increasingly depending on statistical inferences based on available

information. A predictive model can be used to give each user a score that is proportional to

the probability of having a certain personal trait, such as being gullible, introverted, female,

a drug user, gay, etc. [7]. Users then can be targeted based on their predicted propensities

and the relationships of these inferences to a particular advertising campaign. Alternatively,

such characteristics can be used implicitly in campaigns, via models trained on feedback from

those who responded positively. In practice, usually a combination of model confidence and

a budget for showing content or ads leads campaigns to target users in some top percentile

of the score distribution given by predictive models [12].

Traditionally, online user targeting systems, particularly in digital advertising, have been

trained using information on users’ web browsing behavior [12]. However, a growing trend

is to include information disclosed by users on social networks.1 For instance, Facebook

has recently deployed a system that allows third party applications to display ads on their

platform using their user’s profile information, such as the things they explicitly indicate

that they “Like.”2

While some online users may benefit from being targeted based on inferences of their

personal characteristics, others may find such inferences unsettling. Not only may these

inferences be incorrect due to a lack of data or inadequate models, some users may not

wish to have certain characteristics inferred at all. To many, privacy invasions via statistical

inferences are at least as troublesome as privacy invasions based on personal data [2]. In

response to an increase in demand for privacy from online users, suppliers of browsers such

1https://www.facebook.com/about/ads/
2https://developers.facebook.com/blog/post/2014/10/07/audience-network
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as Chrome and Firefox have developed features such as “Do Not Track,” “Incognito,” and

“Private Windows” to control the collection of information about web browsing. However,

these features provide neither clear transparency into what inferences are drawn and why,

nor easy, fine-grained control over what information may be used for inference. Furthermore,

as of now social networks such as Facebook do not have a strong analog to these features

that would allow for transparency and control in how user information is used to decide on

the presentation of content and advertisements.3

In this paper, as a means for providing transparency into the reasons why a particular

inference is drawn about an individual, we draw on an idea introduced for explaining the

reasons behind instance-level document classifications [9]. Specifically, what is a minimal set

of evidence such that if it had not been present, the inference would not have been drawn?

Let’s call this an evidence counterfactual. The evidence counterfactual can be applied beyond

document classification to the sorts of inference that interest us here. As a concrete example,

consider that Manu has been determined by the system’s inference procedure to be gay, based

on the things that Manu has chosen to Like.4 Keeping the inference procedure constant, what

is a minimal set of Likes such that after their removal Manu would no longer be classified as

being gay?

We then introduce the idea of a “cloaking device” as a vehicle to provide (and to study)

control over inferences. Specifically, the cloaking device provides a mechanism for users to in-

hibit the use of particular pieces of information in inference; combined with the transparency

provided by the evidence counterfactual a user could be given control over model-driven in-

ferences. Importantly, the user can cloak particular information from inference, without

having to stop sharing the information with his social network friends. Thus, hopefully, this

combination will allow control with a minimal amount of disruption to the user’s normal

activity. However, this hope rests on the relationship between the evidence and the behavior

of the predictive models.

In this paper we use these analytical tools to answer two main questions: (1) How much

information must users cloak in order to significantly affect inferences about their personal

traits? We find that generally a user does not need to cloak the majority of her information

in order to inhibit inference. In fact, we find that for the most common (to our knowledge)

online inference setting, users need to cloak only a small portion of the information recorded

3In 2014, Facebook developed a feature called “Why am I seeing this ad?” which gives users partial
transparency on why they are being targeted. Users can also selectively cloak a particular categories of ads or
advertisers; they can also modify their “ad preferences” to hide categories of information from being used for
targeting. However it does not currently allow fine grained control over inferences of personal characteristics
based on information displayed, which is the topic of the paper. We view this recent development by
Facebook as strong support for the approach we propose here.

4We will capitalize “Like” when referring to the action or its result on Facebook.
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about them. We also find that, encouragingly, false positive inferences are generally easier to

cloak than true positive inferences. (2) Can firms change their modeling behavior to make

cloaking more difficult? The answer is a definitive yes. In our main results we replicate

the methodology of Kosinski et al. [7] for modeling personal traits; then we demonstrate a

simple modeling change that still gives accurate inferences of personal traits, but requires

users to cloak substantially more information to affect the inferences drawn. The upshot

is that firms can provide transparency and control even into very complicated, predictive

model-driven inferences, but they also can make modeling choices to make control easier or

harder for their users.

The rest of the paper is organized as follows. Section 2 gives additional necessary back-

ground related to online user privacy, the evidence counterfactual, and control. Section 3

formalizes the concept of cloakability. Section 4 examines the effort needed to cloak various

personal characteristics, using a dataset relating Facebook profiles to inferences about per-

sonal traits, showing the degree of cloakability observed across characteristics. The paper

closes by discussing the results and their implications.

2 Privacy, Cloakability, and the Evidence Counterfactual

Online privacy is becoming an increasing concern for consumers, regulators and policy mak-

ers [16]. Treatments of privacy in the analytics literature often focus on the issue of confi-

dentiality of personal characteristics (see [15, 11] for an overview). However, with the rapid

increase in the amount of social media data available, statistical inference about personal

characteristics is drawing attention [3, 2]. A series of papers have shown the predictive power

of information disclosed on Facebook to infer users’ personal characteristics [1, 7, 14]. The

set of pages which users choose to “Like” on Facebook can predict their gender, religion,

sexual or political orientation, and many more personal traits.

A recent study based on a survey of Facebook users found that they did not feel that they

had the appropriate tools to mitigate their privacy concerns when it comes to social network

data [4]. There is evidence that when given the appropriate tools, people will choose to give

up some of the benefits they derive from their social network activity in order to meet their

privacy concerns [6]. Besides being a conceptual tool to help with the analysis of control,

the cloaking device can be a practical tool to achieve it.

Our notion of the evidence counterfactual is based on the work of [9] for explaining

data-driven document classifications. Generalizing that work, consider any domain where

the features taken as input can be seen as evidence for or against a particular non-default5

5The inference not being the default is important for explaining the reasons for model-based prediction.
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inference. Consider also the increasingly common scenario [5] where there are a vast number

of possible pieces of evidence, but any individual normally only exhibits a very small number

of them—such as when drawing inferences from Likes on Facebook.6 Thus, we can provide

transparency by applying the methods presented by [9] to create one or more evidence

counterfactual explanations for any non-default classification. Martens and Provost describe

how to create evidence counterfactual explanations from any arbitrary predictive model.

For our results below, we consider linear models, for which the procedure for computing the

evidence counterfactual is straightforward, efficient, and optimal [9].

Given an individual, a specific model-based inference about the individual, and an evi-

dence counterfactual explanation for why the inference was made, we can now describe the

core design, use, and value of the cloaking device. The cloaking device allows the individual

to hide (to “cloak”) particular evidence, e.g., one or more Likes, from the inference procedure.

Specifically, once a Like is cloaked, the inference procedure would remove it from its input,

and therefore treat the user as if she had not Liked this item. The evidence counterfactual

presents the user with a minimal set of Likes to cloak in order to change the inference made

about her.

Consider the task of predicting whether or not a user is gay using Facebook Likes. While

users might choose to disclose on the platform that they are gay, some may not wish to make

this fact available to advertisers or others modeling online user behavior. A user who has

not shared this status may not want it to be predicted by the system. In addition, a user

who is in fact not gay may not want an incorrect inference to be drawn about him. Figure 1

illustrates two users, their probabilities of being gay as predicted by a model-based inference

procedure, and the effect of removing evidence from their data. As evidence is removed by

cloaking Likes, we see that removing fewer than ten Likes for one user results in a dramatic

drop in the predicted probability of being gay, whereas for the same number of removals the

probability is reduced hardly at all for the other user.

The cloaking device thus has two important dimensions of value. First, it provides us

with a basis for studying the relationship between evidence and model-based inference, and

thereby transparency and control, in settings such as these. Second it provides a practical

The default prediction is the prediction that is given when there is not enough evidence for predicting
anything else, for example predicting that there is no fraud on a particular account. Thus, the explanation
for a default prediction—that there is no evidence for any alternative—will be viewed as either trivial
or unsatisfying. Usually the default inference is either the most common alternative or the least costly
alternative, and very often these two concur. See [9] for further discussion and other nuances of explaining
model-based inferences.

6As with predictive modeling projects generally, engineering the right representation often is key to
top-level performance. So for example, one might code the lack of a particularly popular Like as positive
evidence. We will only consider the presence of a Like in our results, but our qualitative results should
generalize across such alternative representation engineering.
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Figure 1: The predicted probability of being gay as a function of Like cloaking for two
users. For each line, the leftmost point is the estimated probability of being gay for the
user before cloaking. Moving left to right, for each user, Likes are removed one-by-one from
consideration by the inference procedure in order of greatest effect on the estimated score.
One user’s probability drops dramatically with cloaking fewer than ten Likes; the other’s is
hardly affected at all.
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device that could be implemented by social media sites (and others) to provide such trans-

parency and control to its users. This paper focuses on the former, both for its own intrinsic

interest and also as potential support for the latter.

3 A Model of Cloaking

In this section we describe the technical details of the cloaking device as used for the results

in this paper. We do not know the value each user attaches to each piece of information

he chooses to reveal on the platform. We assume uniformity, essentially quantifying the

minimum amount of information to be removed not to be the target of a particular inference.7

As described above, cloaking is defined in the context of a predictive model used by an

entity that engages in digital user modeling and inference, for example for targeting online

content or ads. We assume the model to be fixed.8 We consider a supervised classification

or ranking task, which can be described by a linear model.9 All of the features and tar-

gets in these models are assumed to be binary. In particular, our main model replicates

the predictive modeling used by [7] and use their data on predicting personal traits from

Facebook Likes. More specifically, the modeling procedure first reduces modeling dimension-

ality by computing the singular-value decomposition (SVD) of the matrix of users and their

Likes, and choosing the top-100 SVD dimensions’ vectors as the modeling dimensions (as has

become standard practice with such massively dimensional data). Then logistic regression

models are built on these dimensions to predict a variety of personal traits, as detailed below.

For inference we simulate what is to our understanding the most common method of

taking online actions based on such models. Specifically, we assume that a positive inference

is drawn—e.g., a user would be subject to targeting—if the model assigns the user a score

placing him in a specified top quantile (δ) of the score distribution produced by the predictive

model.10

More formally, let xij ∈ x be an indicator equal to 1 if user i has Liked a piece of

information j and 0 otherwise. For the main results we build the SVD-logistic regression

model described above; then we convert it to a mathematically (and functionally) equivalent

linear logistic regression (LRSVD) model in the original features x, via the transformation

7An extension to this work that we do not consider here could consider minimum-cost cloaking, removing
the subset of evidence (Likes) with minimal cost to the user.

8For the sake of simplicity, we assume either that new models are put into production infrequently, or
that Likes are not cloaked from model learning. Beyond the scope of this paper, there are interesting possible
dynamics between large numbers of users cloaking evidence from learning and the changes in the resultant
models.

9For extensions to nonlinear models see [9].
10For example, for targeting online ads, a typical value for δ would range between 90% − 100%. Perlich

et al. [12] describe in detail online targeting with predictive models based on fine-grained user data.
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described in the appendix A. This transformation facilitates direct manipulation of the

original Likes. From now on unless stated otherwise we will consider this linear logistic

model.

Let βj be the coefficient in the model associated with feature j ∈ {1; ...; J}. Without loss

of generality, assume that these are ranked by decreasing value of β. Each such coefficient

corresponds to the marginal increase in a user’s score if he chooses to Like feature j. Let si

be the model output score given to user i, which ranks users by their probability of having

a characteristic s. It is given by

si =
J∑
j=1

βjxij. (1)

For simplicity, let’s call those users for whom the positive inference is made the “targeted”

users. For a particular set of users, define the cutoff score sδ to be the score of the highest-

ranked user in the quantile directly below the targeted users. Thus the set of targeted,

top-ranked users Ts for classification task s is

Ts = {i|si > sδ}. (2)

To analyze the difficulty or ease of cloaking for each user in the targeted group, we

iteratively remove Likes from his profile until he is successfully cloaked. For our linear

models we do this by iteratively subtracting from his score the coefficient of the feature that

is present in his data instance that has the largest coefficient in the model. Figure 1 shows

two examples. A user is considered to be successfully cloaked when his score falls below

sδ.
11,12

Figure 2 shows the discriminative power associated with each Like in our data for the

task of predicting if individual male users are gay. The ten points with associated text labels

are Likes that have the largest coefficients from the LRSVD model. The top ten Likes for

the user shown in red in figure 1 are shown here as red points. Six out of this user’s top-10

Likes overlap with the top ten for the entire task. This highlighted user is the user that the

LRSVD model predicts as having the highest probability of being gay.

To quantify Like removal and the difficulty of cloaking, we let ηsi,δ represent the effort to

cloak user i from the top δ% of the score distribution for a characteristic s. ηsi,δ is defined

11If the targeted group is defined by a fixed threshold score (such as the estimated probability being
above a fixed threshold), this is straightforward. If the targeted group is defined instead based on the actual
quantile, then when a user is removed from the targeted group another user takes his place. In this paper
we consider users in isolation and do not consider the effects of cloaking on sets of users.

12More generally, for non-linear models the evidence counterfactual would reveal a minimal set of Likes
such that their removal would successfully cloak the individual [9].
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Figure 2: The discriminative power of Likes on Facebook when determining if a user is gay
(Y = 1). Labels are given to the top ten Likes as sorted by their corresponding coefficients
from the LRSVD model. Points colored in red are the top ten pages Liked by the user with
the highest probability of being gay as predicted by the LRSVD model. This is the same
user that appeared in red in figure 1.
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precisely in algorithm 1; it is the minimum number of Likes that must be removed to move

i below the threshold. All else being equal, the effort to cloak a user is smaller when (i) the

coefficients of his removed features are larger, (ii) the threshold score is larger, and/or (iii)

his predicted score is smaller.

Algorithm 1: Algorithm to determine the amount of effort needed to cloak a user for
a particular predictive task.

ηsi,δ ← 0
j ← 1
Sort coefficients β in descending order as 1...J
while si > sδ do

si ← si − βj
ηsi,δ ← ηsi,δ + 1
j ← j + 1

end

The absolute effort to cloak a particular classification task s is given by averaging ηsi,δ
across users in Ts,

ηsδ =

∑
i∈Ts η

s
i,δ

|Ts|
. (3)

Alternatively, we can examine the relative effort to cloak a task for user i, defined by

normalizing the absolute effort by the total quantity of information revealed by the user,

πsi,δ =
ηsi,δ∑J
j=1 xij

. (4)

We can then define the relative effort to cloak a classification task s by averaging this

measure across users in Ts,

πsδ =

∑
i∈Ts π

s
i,δ

|Ts|
. (5)

For the rest of this paper we use δ = 0.90 to indicate that the top 10% of users are being

targeted.13

4 Results

Let us now examine the effort required to cloak the inferences of a variety of personal

characteristics, based on data on Facebook users. We first describe the data, and then

13For other values of δ the results hold qualitatively.
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proceed to assess the effort required to cloak user characteristics.

4.1 Data

Our data were collected through a Facebook application called myPersonality.14 It contains

information on 164, 883 individuals from the United States, including their responses to sur-

vey questions and a subset of their Facebook profiles. Users can be characterized by their

sexual orientation, gender, political affiliation, religious view, IQ, alcohol and drug consump-

tion behavior, personality dimensions, and lifestyle choices. (Users do not necessarily reveal

all of these personal characteristics.) For these users we also know their Facebook Likes.

The personal characteristics are the target variables for the various modeling and infer-

ence problems. Some personal characteristics were extracted directly from users’ Facebook

profiles, whereas others were collected by survey. Binary variables are kept without change.

Variables that fall on a Likert scale are separated into two groups, users that have the largest

Likert value and users that have any other value. Continuous variables are represented as

binary variables using the 90th percentile as a cutoff. Multi-category variables are subsam-

pled to only include the two most frequent categories, with the instances representing the

other categories discarded for the corresponding inference task. Notice also that the feature

data are very sparse; for each characteristic a user displays less than 0.5% of the set of Likes

on average. Table 1 presents summary statistics of the data.

4.2 Replicating the prior prediction results

We first replicate the predictive modeling and inference procedure reported by [7]. Specifi-

cally, we build the predictive models on the SVD dimensions in Python using logistic regres-

sion as implemented in the scikit-learn package. For each model, we choose the regularization

parameter by (5-fold) cross validation, as is the state-of-the-art practice [13]. Appendix B

reports the predictive performance across the set of tasks. The results concur with those

reported by [7]. As in the original paper, the predictive performance is quite strong across

the classification tasks.

4.3 Main result: How hard is it to cloak?

Table 2 reports the efforts to cloak users that belong to the target group (i.e. those users in

the top 10% of users as ranked by model score). First, we will focus on the “All” columns

(in the next section we break down the results by true positives and false positives). The

14Thanks to the authors of [7] for sharing the data.
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results show that although users on average display hundreds of Likes, on average they

need to cloak fewer than 10 to successfully inhibit inference. This corresponds to cloaking

only about 2 − 3% of of a user’s Likes, on average. Digging a little deeper, the prediction

tasks are sorted in table 2 by π, showing that the averages give a fair picture: with only a

couple exceptions the proportion of information needed to inhibit inference is around 2−4%.

The actual numbers of Likes that must be removed vary more, as the top-decile users have

different total numbers of Likes, but nevertheless we see no extreme outliers.

To put these results in context it would be useful to know how strongly the cloakability of

a trait is related to the statistical dependency structure of the data-generating process. One

might think that people who indeed hold a particular trait would exhibit it throughout their

behavior, and in particular throughout the things that they Like. How do these cloakability

results compare to what one would expect if Likes and the trait were not actually interrelated?

To draw this comparison, we conduct a randomization test to assess both qualitatively

and quantitatively whether cloakability on these real individuals is indeed harder than it

would be in the absence of this statistical interdependency. We first create a sampling

distribution to be used to randomly assign Likes to individuals. We want only to remove

the interdependency between the Likes and the dependency between the target and the

Likes, so we retain the general popularity of Likes as follows (otherwise, due to the skew in

popularity, individuals would have collections of oddly unpopular Likes). For each prediction

task (personal trait), we assign to each Like a weight equal to the fraction of users for that

task who have that particular Like; we then normalize the set of weights so that their sum

is equal to one in order to create a sampling distribution. Then, for each user, we draw

from this distribution a set of Likes without replacement. For each user we draw the same

number of Likes as in the original dataset. Thus, in the resultant population the popularity

distribution over the Likes is the same as in the original data, and the numbers of Likes that

people have is the same, and the relationship between the number of Likes and the target

trait is the same. However, there are no statistical dependencies among the Likes or between

the Likes and the trait. This procedure is repeated 1,000 times and each time we apply the

same procedure as above to the new population, computing the values of η0.9 and π0.9. This

results in a distribution over η0.9 and π0.9 when the dependencies are removed.

Figure 3a shows the difference between η0.9 in the no-dependency population and the

true η0.9. Quantitatively, for all tasks we find that the actual absolute effort to cloak is

always higher (p < 0.01, sign test) than cloaking would be if Likes were randomly assigned.

Qualitatively, we see that indeed cloaking seems very easy in the random case. In all but

three cases, one needs to cloak fewer than two Likes on average to inhibit inference. In all

cases, inference can be inhibited by cloaking fewer than four Likes on average. The figure

12
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shows that generally the statistical dependency structure renders cloaking several times

harder than it would otherwise be.

Figure 3b shows the difference in the relative effort to cloak, π0.9, between the randomized

setting and the true setting. Here the highest level result is the same: in every case the

relative effort is no worse than in the true setting (p < 0.01, sign test). However, some of

the differences quantitatively are not as striking as in the comparison of absolute effort. In

fact, in one case (“is lesbian”) the difference is essentially zero. This seeming paradox is

explained by the fact that the numbers of Likes for the true top-decile individuals can be

quite different from the numbers of likes for the top-decile individuals in the no-dependency

setting. So, for example, the actual top-decile individuals for “is lesbian” have twice as many

Likes on average as the top-decile individuals in the randomized setting.

The upshot is that although in an absolute sense it is relatively easy to inhibit inference

by cloaking Likes, the statistical dependence structure among the Likes and the predicted

trait makes it more difficult than it would be without such structure. This has an important

implication to which we will return in the discussion section.

4.4 Cloaking true positives vs. false positives

At the outset we introduced the idea that there are multiple settings where one might want to

inhibit inference. Possibly the most important distinction is between inhibiting an inference

that is in fact true (a true positive inference) and inhibiting an inference that is false (a false

positive inference).

Based on the prior results, one might expect that a false positive inference would be easier

to cloak because the statistical dependency to the (positive) trait is by definition missing.

Thus, in a sense the false positive user “accidentally” received the inference, similarly to how

the top-decile randomized users “accidentally” ended up in the class. In neither case was the

presence of the trait reflected in the behavior of the user. However, there is an important

distinction: in the randomized setting the statistical dependencies also were broken among

the Likes, as opposed to simply between each Like and the target trait. For false positives,

intuitively there still may be strong statistical interdependencies between the Likes—so if

one has some Likes that trigger the inference by the predictive model, one may have many

Likes that trigger the inference.

Thus, in addition to measuring the cloakability across all users in the targeted group,

table 2 also reports the same results for true-positive (TP) and false-positive (FP) users

separately. The results show that cloaking is indeed generally more difficult for true-positive

users than for false-positive (p < 0.05, sign test). The differences in cloakability between

13
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(a) Comparison for absolute effort to cloak (η0.9).

(b) Comparison for relative effort to cloak (π0.9).

Figure 3: Comparison between absolute (η0.9) and relative (π0.9) effort to cloak in the LRSVD
model. Results from the normal cloaking procedure are compared to those of a randomization
test for each task. Error bars depict the 95% confidence interval.
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true-positive and false-positive users are shown in figure 4.

These results may provide some intuitive satisfaction. It is relatively easier to “fix” an

incorrect classification, than to “hide” from a correct inference. The most striking example

of this is in prediction for the “is muslim” trait. On average, to inhibit the positive inference

for someone who actually is Muslim, 28 Likes have to be cloaked. This is almost twice as

many as for any other trait. On the other hand, to inhibit the “is muslim” classification for

a non-Muslim, only 3 traits need to be cloaked. This suggests a line of future inquiry: does

this illustrate a case of a strong dependency between a personal trait and the individual’s

choice of actions? Or is there some alternative explanation having to do with the subtleties

of predictive modeling? Other such examples can be see, although to a lesser extent, for

“age ≥ 37”, “IQ < 90”, and “is gay”.

A comprehensive analysis of this question is beyond the scope of this paper, however we

can offer an initial view. Besides the statistical dependency relationships discussed above,

the observed differences in cloakability for the true-positive and false-positive users can also

be attributed to the interaction between two factors: variance in predicted probability and

the order in which each model ranks the users subject to prediction. For some tasks we find

that the predicted probabilities for all users in the targeted group are tightly clustered; other

tasks have a wide range or probabilities. Within the targeted group, each model finds itself

discriminating between TP and FP users differently. Some models see a majority of TP

users being ranked above FP users, while others find TP and FP to be mixed. If a majority

of FP users find themselves ranked below their TP counterparts, ceteris paribus they will be

easier to cloak simply because they are closer to the threshold. Additionally, if the variance

in predicted probability is large, and many FP users fall at the lower end of the targeted

range, again the FP users will find it easier to cloak themselves from inference.

5 Discussion

In the previous section, we showed that inhibiting inference requires cloaking only a relatively

small amount of personal information—only around seven (3%) out of one’s hundreds of Likes

on average, and that the statistical dependence structure among the Likes and the predicted

trait makes cloaking more difficult than it would be without such dependency structure.

However, we showed this for a particular predictive model and modeling procedure—even

though it is a best-practices modeling procedure, we did not show that cloaking would be

easy using any predictive model.

Could it be that organizations could make different modeling decisions that would allow

them still to predict accurately and offer transparency and control with a cloaking device,
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(a) Difference in cloaking, η0.9.

(b) Difference in cloaking, π0.9.

Figure 4: Difference in cloaking, η0.9 and π0.9, for true positive and false positive users using
the LRSVD model. Error bars depict the 95% confidence interval.
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but make it much harder for the users actually to cloak themselves? Those who run some

organizations may be quite happy to provide transparency and easy control, either because

they believe it is simply the right thing to do, or because they believe that it will increase

user/customer satisfaction, or even because they believe it will be more profitable as the

targeting actually will be better. Others may want to give the semblance of transparency

and control, but actually dissuade users from manipulating their profiles to cloak. To ex-

plore whether a targeter can manipulate cloakability through modeling choices, let’s briefly

examine two alternative model choices.

The naive Bayes model (NB) is a linear model quite similar to logistic regression,15 but

with a certain particularity. Naive Bayes assumes that the pieces of evidence taken as input

(the Likes) are conditionally independent of each other given the target (the trait). Mechan-

ically, the algorithm for inducing the NB model from data treats each Like independently.

When the Likes in fact are highly correlated, this creates a pathology in predictive behav-

ior: the resulting inference model will tend to “double count” when users present correlated

Likes. However, our unscrupulous targeter may decide to use this pathology to its advantage.

The model will tend to give extra high scores when correlated evidence is presented, and

because of the double counting, the user would have to cloak multiple Likes to achieve the

same effect as in a model that does not exhibit this pathology (like the LRSVD model).16

For completeness, in addition to the LRSVD model and the NB model we also will

examine a straightforward logistic regression model (LR) trained on the full (non-SVD) raw

Like feature space. We would expect the results for LRSVD and LR to be similar, but that

the NB model would require significantly more cloaking to inhibit inference.

Table 3 presents the values for our cloaking measure across different models.17 As ex-

pected, the cloaking efforts required for the LR and LRSVD models are similar. In contrast,

cloaking is indeed substantially more difficult for NB. Rather than needing to cloak only a

half-dozen or so Likes, for the NB models users on average have to cloak 57 Likes. This is on

average 15% of a user’s Like set. At the extreme, an average person classified as “is Muslim”

has to cloak 50% of her Likes! A person classified as “conscientiousness ≥ 5” has to cloak

44% of her Likes. Classified as “is female”? With the NB model you’ll have to cloak over

377 (25%) of your Likes to escape that classification.

In summary, a targeter wishing to make cloaking more difficult could do so without

15Indeed equivalent under certain assumptions [10].
16Technically, since many Likes that supply evidence of a user being part of the positive class are highly

correlated with one another, the NB modeling will essentially assign all of these Likes high coefficients
whereas the LR modeling spreads the overall impact across the coefficients of the correlated Likes (in one
way or another depending on the type and degree of regularization).

17The predictive (generalization) performance for the NB model is slightly lower than that for the logistic
regression models. For details, see appendix B.
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imposing any restrictions on their users by changing their predictive model choice. While it

is clear that Like pages do not conform to the independence assumption inherent to naive

Bayes, we find that across all tasks (with the exception of “is female”) that the difference

in predictive performance (measured by the area under the ROC curve (AUC) as in [7])

between LRSVD/LR and NB models is only 5% on average. Thus, by taking a small loss in

predictive performance, it is possible to make cloaking significantly more difficult.

6 Conclusion

In this paper we develop a method to give online users transparency into why certain infer-

ences are made about them by statistical models, and control to inhibit those inferences by

hiding (“cloaking”) certain personal information. We use this method to examine whether

such transparency and control would be a reasonable goal, by assessing how difficult it would

be for users to actually inhibit such inferences. The method is applied to data from a large

collection of real users on Facebook, where prior work has shown that predictive models can

infer their personal characteristics with high accuracy from their Likes.

The results show that the amount of effort users must exert in order to successfully hide

themselves is quite small. Although it is higher than if there were no statistical dependency

among the Likes and the personal traits, the users still need only to cloak about a half-dozen

of their hundreds of Likes on average to inhibit inference of a personal trait. Users for whom

the inference made is actually wrong have an even easier time cloaking the inference.

However, organizations engaging in such modeling can alter their modeling choices to

make cloaking increasingly difficult. The results show that, at the expense of a small amount

of predictive performance, targeters can choose different types of predictive models that will

leverage the interdependence of features to inflate cloaking difficulty. In extreme cases, even

a simple modeling change can, for certain traits, raise the amount of Likes needing to be

cloaked up to hundreds of Likes (from a half-dozen!). In these extreme cases, the increase

in the number of cloaked Likes can result in having to cloak 20% of a user’s profile (from

2%).

We propose three directions for future research. First, instead of treating all features as

having a uniform weight, the relative importance for each can be factored into the decision

criteria if known. This allows for cloaking to be measured using metrics beyond the minimal

set we have already investigated. As real users may be unlikely to view all of their decisions as

being equally important to them, the results for such an analysis may be quite different from

what we have already seen. Second, as mentioned previously, we do not have a clear answer

as to whether there is a strong dependency between a personal trait and an individual’s choice
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of actions. Modifications to our randomization test and drawing on behavioral knowledge

for these user traits may offer insight into this question. Third, as digital data becomes

increasingly centered on inherent network structures, expanding the set of features to utilize

network based measures can have a dramatic effect on inference and cloakability. [8] shows

how collective inference can improve the performance of a predictive model in the context

of networked data. In our setting, utilizing network data could lead to not only removing

features, but to suggesting the removal of friends in order to avoid being targeted.
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Appendices

A Singular Value Decomposition (SVD)

The performance of a Logistic regression model can be improved by reducing the set of

features if it is very large or if the data are sparse. A common technique is to use a singular
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value decomposition (SVD).

Let M be a feature matrix which contains n records and m features. M can be decom-

posed into:

M = UΣV ∗. (6)

In the above decomposition, U is an n×n unitary matrix, Σ is an n×m diagonal matrix

composed of the singular values of M sorted in descending order, and V ∗ is the m × m

conjugate transpose of the unitary matrix V . To reduce the space, we can choose to only

include a subset of the first k features from the matrix Σ when training a new model.

A model trained on this reduced feature space will not yield coefficients for each of the

original features. A simple transformation will allow for a mapping between a model trained

on the SVD space to the original set of features before the reduction. Let βSVD be the set of

coefficients from the linear model trained on the SVD space and let β be the coefficients on

the original set of features. We map from one to the other by:

β = βSVDΣ−1V ∗. (7)

B Classification Performance

Table 4 reports the AUC across classification tasks and across different predictive models.
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Task Number Users Number Likes % Positive Average Likes

age ≥ 37 145,400 179,605 0.127 216
agreeableness ≥ 5 136,974 179,440 0.014 218
conscientiousness ≥ 5 136,974 179,440 0.018 218
extraversion ≥ 5 136,974 179,440 0.033 218
iq ≥ 130 4,540 136,289 0.130 186
iq < 90 4,540 136,289 0.073 186
is democrat 7,301 127,103 0.596 262
is drinking 3,351 118,273 0.485 262
is female 164,285 179,605 0.616 209
is gay 22,383 169,219 0.046 192
is homosexual 51,703 179,182 0.035 257
is lesbian 29,320 175,993 0.027 307
is muslim 11,600 148,943 0.050 238
is single 124,863 179,605 0.535 226
is smoking 3,376 118,321 0.237 261
life satisfaction ≥ 6 5,958 141,110 0.125 252
network density ≥ 65 32,704 178,737 0.012 214
neuroticism ≥ 5 136,974 179,440 0.004 218
num friends ≥ 585 32,704 178,737 0.140 214
openness ≥ 5 136,974 179,440 0.043 218
ss belief = 1 13,900 169,487 0.178 229
ss belief = 5 13,900 169,487 0.079 229
uses drugs 2,490 105,001 0.172 264

Table 1: Summary statistics of the dataset. Number of Likes indicates how many unique
Like pages are associated with a given task. Percent positive are how many positive instances
there are for each task. Average Likes indicates the average number of Likes a user associated
with the given task has.

22



Chen, Fraiberger, Moakler & Provost: Working Paper CBA-15-01.

η0.9 π0.9
Task All TP FP All TP FP

is democrat 8.462 8.533 2.000 0.017 0.017 0.003
is female 9.971 10.015 5.475 0.019 0.019 0.013
extraversion ≥ 5 4.428 5.944 4.300 0.019 0.024 0.018
is lesbian 3.075 5.437 2.829 0.019 0.035 0.017
is drinking 6.771 7.463 3.875 0.020 0.022 0.012
num friends ≥ 585 5.043 6.556 4.197 0.021 0.025 0.019
ss belief = 5 8.251 11.098 7.760 0.021 0.025 0.021
network density ≥ 65 10.545 15.308 10.388 0.021 0.026 0.021
neuroticism ≥ 5 9.140 5.667 9.173 0.022 0.016 0.022
life satisfaction ≥ 6 5.128 7.214 4.642 0.022 0.032 0.020
openness ≥ 5 6.674 7.677 6.571 0.023 0.028 0.023
agreeableness ≥ 5 4.985 6.508 4.957 0.023 0.033 0.023
is homosexual 3.493 6.572 2.888 0.024 0.047 0.019
uses drugs 12.161 12.143 12.176 0.027 0.033 0.022
is smoking 8.357 9.800 5.621 0.028 0.032 0.019
iq ≥ 130 6.566 3.429 7.283 0.028 0.035 0.026
ss belief = 1 5.738 6.880 4.946 0.029 0.036 0.024
is single 13.665 15.514 7.888 0.034 0.038 0.021
is gay 5.653 10.944 3.161 0.038 0.074 0.022
conscientiousness ≥ 5 4.746 6.746 4.670 0.039 0.047 0.039
iq < 90 6.867 16.318 4.582 0.045 0.090 0.035
age ≥ 37 10.259 13.011 5.847 0.077 0.097 0.044
is muslim 11.706 27.804 2.930 0.096 0.202 0.039
Mean 7.465 9.851 5.572 0.031 0.045 0.023
Median 6.771 7.677 4.946 0.023 0.033 0.021

Table 2: The effort to cloak different users’ characteristics using the logistic regression with
the 100-SVD-component logistic regression (LRSVD) model. Absolute efforts are presented
in the left panel, and relative efforts are in the right panel. For each panel, we show in the
first column the full set of users, in the second column only the true positive users, and in
the third column only the false positive users (the negative users falsely targeted).
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η0.9 π0.9
Task LRSVD LR NB LRSVD LR NB

is democrat 8.462 9.396 61.736 0.017 0.02 0.106
is female 9.971 11.619 377.436 0.019 0.020 0.259
extraversion ≥ 5 4.428 3.617 58.048 0.019 0.025 0.102
is lesbian 3.075 2.507 7.361 0.019 0.039 0.136
is drinking 6.771 5.398 17.145 0.02 0.021 0.082
num friends ≥ 585 5.043 4.748 52.599 0.021 0.025 0.106
ss belief = 5 8.251 4.692 18.432 0.021 0.041 0.062
network density ≥ 65 10.545 2.569 75.717 0.021 0.039 0.077
neuroticism ≥ 5 9.140 2.292 254.467 0.022 0.036 0.180
life satisfaction ≥ 6 5.128 4.061 10.297 0.022 0.072 0.083
openness ≥ 5 6.674 3.700 28.650 0.023 0.025 0.111
agreeableness ≥ 5 4.985 2.871 7.227 0.023 0.043 0.126
is homosexual 3.493 3.396 8.212 0.024 0.039 0.108
uses drugs 12.161 8.161 31.548 0.027 0.034 0.090
is smoking 8.357 7.012 26.190 0.028 0.032 0.135
iq ≥ 130 6.566 2.920 14.381 0.028 0.033 0.094
ss belief = 1 5.738 4.550 24.207 0.029 0.036 0.104
is single 13.665 10.233 105.794 0.034 0.028 0.125
is gay 5.653 9.073 20.597 0.038 0.150 0.153
conscientiousness ≥ 5 4.746 3.357 16.091 0.039 0.048 0.441
iq < 90 6.867 3.681 21.619 0.045 0.073 0.072
age ≥ 37 10.259 7.263 37.746 0.077 0.074 0.179
is muslim 11.706 8.934 31.090 0.096 0.101 0.465
Mean 7.465 5.48 56.808 0.031 0.046 0.148
Median 6.771 4.55 26.19 0.023 0.036 0.108

Table 3: The effort to cloak different users’ characteristics using a logistic regression with
100 SVD components (LRSVD), a logistic regression (LR), and naive Bayes (NB) model.
Absolute efforts are presented in the left panel, and relative efforts are in the right panel.
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LRSVD LR NB

age ≥ 37 0.868 0.904 0.816
agreeableness ≥ 5 0.604 0.590 0.587
conscientiousness ≥ 5 0.677 0.670 0.626
extraversion ≥ 5 0.680 0.671 0.590
iq ≥ 130 0.620 0.636 0.619
iq < 90 0.631 0.625 0.571
is democrat 0.889 0.888 0.822
is drinking 0.782 0.790 0.683
is female 0.922 0.967 0.667
is gay 0.890 0.904 0.784
is homosexual 0.788 0.839 0.694
is lesbian 0.729 0.797 0.605
is muslim 0.949 0.949 0.894
is single 0.637 0.665 0.644
is smoking 0.785 0.792 0.673
life satisfaction ≥ 6 0.594 0.579 0.570
network density ≥ 65 0.609 0.575 0.518
neuroticism ≥ 5 0.673 0.603 0.523
num friends ≥ 585 0.717 0.734 0.625
openness ≥ 5 0.665 0.660 0.635
ss belief = 1 0.689 0.700 0.651
ss belief = 5 0.641 0.616 0.546
uses drugs 0.781 0.772 0.683

Table 4: Area under the ROC curve (AUC) for each classification task using a logistic
regression with 100 SVD components (LRSVD), a logistic regression (LR), and a naive
Bayes model (NB).
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