33 research outputs found

    C2-O-sLeX Glycoproteins Are E-Selectin Ligands that Regulate Invasion of Human Colon and Hepatic Carcinoma Cells

    Get PDF
    Similar to mechanisms of recruitment of activated leukocytes to inflamed tissues, selectins mediate adhesion and extravasation of circulating cancer cells. Our objective was to determine whether sialyl Lewis X modified core 2 O-glycans (C2-O-sLeX) present on colon and hepatic carcinoma cells promote their adhesion and invasion. We examined membrane expression of C2-O-sLeX, selectin binding, invasion of human colon and hepatic carcinoma cell lines, and mRNA levels of alpha-2,3 fucosyltransferase (FucT-III) and core 2 beta-1,6 N-acetylglucosaminyltransferase (C2GnT1) genes, necessary for C2-O-sLeX synthesis, by quantitative reverse-transcriptase (RT) PCR. Synthesis of core 2 branched O-glycans decorated by sLeX is dependent on C2GnT1 function and thus we determined enzyme activity of C2GnT1. The cell lines that expressed C2GnT1 and FucT-III mRNA by quantitative RT-PCR were highly positive for C2-O-sLeX by flow cytometry, and colon carcinoma cells possessed highly active C2GnT1 enzyme. Cells bound avidly to E-selection but not to P- and L-selectin. Gene knock-down of C2GnT1 in colon and hepatic carcinoma cells using short hairpin RNAs (shRNA) resulted in a 40–90% decrease in C2-O-sLeX and a 30–50% decrease in E-selectin binding compared to control cells. Invasion of hepatic and colon carcinoma cells containing C2GnT1 shRNA was significantly reduced compared to control cells in Matrigel assays and C2GnT1 activity was down-regulated in the latter cells. The sLeX epitope was predominantly distributed on core 2 O-glycans on colon and hepatic carcinoma cells. Our findings indicate that C2GnT1 gene expression and the resulting C2-O-sLeX carbohydrates produced mediate the adhesive and invasive behaviors of human carcinomas which may influence their metastatic potential

    Killing of Escherichia coli by Crohn's Disease Monocyte-derived Macrophages and Its Enhancement by Hydroxychloroquine and Vitamin D

    Get PDF
    BACKGROUND: Crohn's disease (CD) is associated with defective innate immunity, including impaired neutrophil chemotaxis, and mucosal invasion by bacteria, particularly adherent and invasive Escherichia coli that replicate inside macrophage phagolysosomes. We compared CD and healthy control (HC) macrophages for their abilities to kill E. coli and generate neutrophil chemoattractants and also assessed the effects of hydroxychloroquine (HCQ) and vitamin D on killing of phagocytosed E. coli. METHODS: Peripheral blood monocyte-derived macrophages from CD and HC were compared for bacterial killing and generation of neutrophil chemoattractants in response to CD-derived E. coli. Escherichia coli replication was also assessed in the presence and absence of HCQ, alone and with antibiotics, and vitamin D. RESULTS: Monocyte-derived macrophages from patients with CD were similar to HC in allowing replication of phagocytosed CD-derived E. coli: HM605 {CD: N = 10, mean fold replication in 3 hr = 1.08 (95% confidence interval [CI], 0.39–1.78); HC: N = 9, 1.50 (95% CI, 1.02–1.97); P = 0.15} and also in generation of neutrophil chemoattractants in response to E. coli (mean fold chemotaxis relative to control: CD = 2.55 [95% CI, 2.31–2.80]; HC = 2.65 [95% CI, 2.46–2.85], P = 0.42). HCQ and 1,25 OH(2)-vitamin D(3) both caused dose-dependent inhibition of intramacrophage E. coli replication 3-hour postinfection; HCQ: 73.9% inhibition (P < 0.001) at 1 μg/mL, accompanied by raised intraphagosomal pH, and 1,25 OH(2)-vitamin D(3): 80.7% inhibition (P < 0.05) at 80 nM. HCQ had synergistic effects with doxycycline and ciprofloxacin. CONCLUSIONS: CD and HC macrophages perform similarly in allowing replication of phagocytosed E. coli and generating neutrophil chemoattractants. Replication of phagocytosed E. coli was substantially decreased by HCQ and vitamin D. These warrant further therapeutic trials in CD in combination with relevant antibiotics

    Etude de l'activité des glycosyltransférases (de leurs régulations structurales à la modulation de l'expression des glyco-antigènes Sialyl-Lewis)

    No full text
    Nous avons analysé les modifications post-traductionnelles de la b3GnT-3, la C2GnT-I, la FucT-I, la FucT-VII, la ST3Gal-I et la ST6Gal-I. Nos résultats montre qu à l exception de la FucT-VII, toutes ces glycosyltransférases sont sécrétées et que la dimérisation de ces enzymes ne mène pas toujours à leur rétention golgienne. Par la suite, nous avons établi que l absence de N-glycosylation inactive totalement la C2GnT-I alors que la FucT-VII conserve sa capacité de fucosyler les sites de fixation des sélectines sur le PSGL-1, seulement quand des structures core 2 sont présentes. Pour finir, nous avons évalué l effet de l expression transgénique de la FucT-I dans des lignées tumorales. Nous avons trouvé qu elle était corrélée avec une diminution des sLex, mais pas des sLea. Cette réduction entraîne une inhibition de l adhésion E-sélectine-dépendante des lignées HT29 et HepG2, mais pas des BxPC3. De plus, nous montrons que la FucT-I n altère pas la fixation de la P-sélectine.We analyzed post-translational modifications of the b3GnT-3, the C2GnT-I, the FucT-I, the FucT-VII, the ST3Gal-I and the ST6Gal-I. Our results showed that, except FucT-VII, all of these glycosyltransferases were secreted and that the dimerization does not always lead to their Golgi retention. Thereafter, we established that the absence of N-glycosylation inactivates completely C2GnT-I, whereas the FucT-VII retains the ability to fucosylate binding site(s) for selectins on the PSGL-1 but only when core2-structures are present. In the last part, we evaluated the effect of the FucT-I transgenic expression into three tumor cell lines. We found that it was correlated with a decrease in sLex synthesis, but not in sLea. This reduction induce an inhibition of E-selectin-dependent adhesion for the HT29 and HepG2 cells, but not for BxPC3. Moreover, we showed that FucT-I didn t have effect on P-selectin binding.AIX-MARSEILLE2-BU Méd/Odontol. (130552103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae

    No full text
    Crohn disease (CD) is a multifactorial disease in which an abnormal immune response in the gastrointestinal (GI) tract leads to chronic inflammation. The small intestine, particularly the ileum, of patients with CD is colonized by adherent-invasive E. coli (AIEC) — a pathogenic group of E. coli able to adhere to and invade intestinal epithelial cells. As the earliest inflammatory lesions are microscopic erosions of the epithelium lining the Peyer’s patches (PPs), we investigated the ability of AIEC bacteria to interact with PPs and the virulence factors involved. We found that AIEC bacteria could interact with mouse and human PPs via long polar fimbriae (LPF). An LPF-negative AIEC mutant was highly impaired in its ability to interact with mouse and human PPs and to translocate across monolayers of M cells, specialized epithelial cells at the surface of PPs. The prevalence of AIEC strains harboring the lpf operon was markedly higher in CD patients compared with controls. In addition, increased numbers of AIEC, but not LPF-deficient AIEC, bacteria were found interacting with PPs from Nod2–/– mice compared with WT mice. In conclusion, we have identified LPF as a key factor for AIEC to target PPs. This could be the missing link between AIEC colonization and the presence of early lesions in the PPs of CD patients

    Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer

    No full text
    Objective: Colonic mucosa-associated Escherichia coli are increased in Crohn's disease (CD) and colorectal cancer (CRC). They variously haemagglutinate, invade epithelial cell lines, replicate within macrophages, translocate across M (microfold) cells and damage DNA. We investigated genes responsible for these effects and their co-association in colonic mucosal isolates. Design: A fosmid library yielding 968 clones was prepared in E coli EPI300-T1 using DNA from a haemagglutinating CRC isolate, and resulting haemagglutinating clones were 454-pyrosequenced. PCR screening was performed on 281 colonic E coli isolates from inflammatory bowel disease (IBD) (35 patients), CRC (21) and controls (24; sporadic polyps or irritable bowel syndrome). Results: 454-Pyrosequencing of fosmids from the haemagglutinating clones (n=8) identified the afimbrial adhesin afa-1 operon. Transfection of afa-1 into E coli K-12 predictably conferred diffuse adherence plus invasion of HEp-2 and I-407 epithelial cells, and upregulation of vascular endothelial growth factor. E coli expressing afaC were common in CRC (14/21, p=0.0009) and CD (9/14, p=0.005) but not ulcerative colitis (UC; 8/21) compared with controls (4/24). E coli expressing both afaC and lpfA (relevant to M-cell translocation) were common in CD (8/14, p=0.0019) and CRC (14/21, p=0.0001), but not UC (6/21) compared with controls (2/24). E coli expressing both afaC and pks (genotoxic) were common in CRC (11/21, p=0.0015) and UC (8/21, p=0.022), but not CD (4/14) compared with controls (2/24). All isolates expressed dsbA and htrA relevant to intra-macrophage replication, and 242/281 expressed fimH encoding type-1 fimbrial adhesin. Conclusions: IBD and CRC commonly have colonic mucosal E coli that express genes that confer properties relevant to pathogenesis including M-cell translocation, angiogenesis and genotoxicity
    corecore