26 research outputs found

    Fundamentals and application of voltammetric electronic tongues in quantitative analysis

    Get PDF
    Altres ajuts: acords transformatius de la UABElectronic tongues (ETs) are bioinspired analytical tools based on the synergies between (bio)sensors and chemometrics. Through the application of chemometrics, it is possible to infer underlying relationships between the measured analytical signals and the chemical properties of the samples, both for descriptive and predictive purposes, otherwise impossible to decipher. Research in voltammetric ETs during the last two decades has demonstrated the benefits derived from the use of sensor arrays with complementary response, together with advanced data treatment methods to enhance their overall performance. In this direction, the different approaches followed when developing voltammetric ETs and some relevant applications in quantitative analysis are reviewed herein

    Vascular Endothelial Growth Factor-Delivery Systems for Cardiac Repair: An Overview

    Get PDF
    Since the discovery of the Vascular Endothelial Growth Factor (VEGF) and its leading role in the angiogenic process, this has been seen as a promising molecule for promoting neovascularization in the infarcted heart. However, even though several clinical trials were initiated, no therapeutic effects were observed, due in part to the short half life of this factor when administered directly to the tissue. In this context, drug delivery systems appear to offer a promising strategy to overcome limitations in clinical trials of VEGF

    Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes

    Get PDF
    Here we describe a label-free electrochemical DNA sensor based on poly(3,4-ethylenedioxythiophene)-modified (PEDOT-modified) electrodes. An acetylene-terminated DNA probe, complementary to a specific "Hepatitis C" virus sequence, was immobilized onto azido-derivatized conducting PEDOT electrodes using "click" chemistry. DNA hybridization was then detected by differential pulse voltammetry, evaluating the changes in the electrochemical properties of the polymer produced by the recognition event. A limit of detection of 0.13. nM was achieved using this highly selective PEDOT-based genosensor, without the need for labeling techniques or microelectrode fabrication processes. These results are promising for the development of label-free and reagentless DNA hybridization sensors based on conducting polymeric substrates. Biosensors can be easily prepared using any DNA sequence containing an alkyne moiety. The data presented here reveal the potential of this DNA sensor for diagnostic applications in the screening of diseases, such as "Hepatitis C", and genetic mutations.The authors would like to thank the ICTS “NANBIOSIS”, more specifically to the Nanotechnology Platform, unit of the Networking Biomedical Research Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) at the Institute for Bioengineering of Catalonia (IBEC) and also to the Serveis Cientificotècnics (SCT) of the Universitat de Barcelona (UB) for their assistance in XPS and ToF-SIMS analyses. This work was supported by Networking Biomedical Research Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain. The Nanobioengineering group at IBEC receives support from the Spanish Ministry of Science and Education and the Commission for Universities and Research of the Department of Innovation, Universities and Enterprise of the Generalitat de Catalunya (No. 2009 SGR 505). In addition, the research received support from the Spanish Ministry of Science and Education, CICYT (CTQ2009-07758), and the Fundación Botín, Santander, Spain.Peer reviewe

    Selection of an aptamer against the enzyme 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Plasmodium falciparum.

    Full text link
    The methyl erythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential for malaria parasites and also for several human pathogenic bacteria, thus representing an interesting target for future antimalarials and antibiotics and for diagnostic strategies. We have developed a DNA aptamer (D10) against Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of this metabolic route. D10 binds in vitro to recombinant DXR from P. falciparum and Escherichia coli, showing at 10 µM a ca. 50% inhibition of the bacterial enzyme. In silico docking analysis indicates that D10 associates with DXR in solvent-exposed regions outside the active center pocket. According to fluorescence confocal microscopy data, this aptamer specifically targets in P. falciparum in vitro cultures the apicoplast organelle where the MEP pathway is localized and is, therefore, a highly specific marker of red blood cells parasitized by Plasmodium vs. naïve erythrocytes. D10 is also selective for the detection of MEP+ bacteria (e.g., E. coli and Pseudomonas aeruginosa) vs. those lacking DXR (e.g., Enterococcus faecalis). Based on these results, we discuss the potential of DNA aptamers in the development of ligands that can outcompete the performance of the well-established antibody technology for future therapeutic and diagnostic approaches

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Trends in Flow-based Biosensing Systems for Pesticide Assessment

    No full text
    This review gives a survey on the state of the art of pesticide detection usingflow-based biosensing systems for sample screening. Although immunosensor systems havebeen proposed as powerful pesticide monitoring tools, this review is mainly focused onenzyme-based biosensors, as they are the most commonly employed when using a flowsystem. Among the different detection methods able to be integrated into flow-injectionanalysis (FIA) systems, the electrochemical ones will be treated in more detail, due to theirhigh sensitivity, simple sample pretreatment, easy operational procedures and real-timedetection. During the last decade, new trends have been emerging in order to increase theenzyme stability, the sensitivity and selectivity of the measurements, and to lower thedetection limits. These approaches are based on (i) the design of novel matrices for enzymeimmobilisation, (ii) new manifold configurations of the FIA system, sometimes includingminiaturisation or lab-on-chip protocols thanks to micromachining technology, (iii) the useof cholinesterase enzymes either from various commercial sources or genetically modifiedwith the aim of being more sensitive, (iv) the incorporation of other highly specificenzymes, such as organophosphate hydrolase (OPH) or parathion hydrolase (PH) and (v) thecombination of different electrochemical methods of detection. This article discusses thesenovel strategies and their advantages and limitations

    Electrochemical biosensors featuring oriented antibody immobilization via electrografted and self-assembled hydrazide chemistry

    No full text
    Appropriate site-directed chemistry is essential to maximize the performance of immunosensors. We present two new functionalization strategies that preserve proper folding and binding potential of antibodies by forcing their oriented immobilization. Both strategies are based on the formation of hydrazone bonds between aldehyde groups on the Fc moieties of periodate-oxidized antibodies and hydrazide groups on functionalized gold electrodes. Those hydrazide groups are introduced by electrografting of diazonium salts or by self assembly of mono- and dithiolated hydrazide linkers, resulting in films with tailored functional groups and, thus, antibody distribution and spacing. Their barrier properties and permeability toward electroactive species are evaluated. To demonstrate the potential of these new functionalization strategies, detection of bacteriophage MS2 is performed through either a direct assay using electrochemical impedance spectroscopy (EIS) or through a sandwich assay using differential pulse voltammetry (DPV). Diazonium and monothiolated self-assembled monolayer-modified electrodes enable the detection of less than 1 plaque forming unit (pfu)/mL in a direct EIS assay. However, nonspecific adsorption renders measurements in river water samples difficult. In contrast, sandwich-assays on electrodes with electrografted diazonium salts and monothiolated self-assembled monolayers do not show significant matrix effects using river water samples, but the limits of detection are 108 times higher than those of the direct assay. Best results are achieved for immunosensors based on mixed monolayers of hydrazide and hydroxyl diothiolated linkers (15 pfu/mL). These new functionalization techniques are facile to implement. They afford the possibility to tune the surface composition and tailor the electrochemical properties of electrochemical sensors. These advantages should translate into broad interest in this type of surface chemistry for biosensor developm

    Evaluation of different mediator-modified screen-printed electrodes used in a flow system as amperometric sensors for NADH

    No full text
    This work presents a comparative study between two different methods for the preparation of mediator-modified screen-printed electrodes, to be used as detectors in a reliable flow injection system for the determination of the nicotinamide adenine dinucleotide (NADH) coenzyme. The best strategy was selected for the final development of compact biosensors based on dehydrogenase enzymes. For the first immobilisation strategy, different redox mediators were electropolymerised onto the SPE surface. The second immobilisation strategy was carried out using polysulfone–graphite composites, which were deposited by screen-printing technology onto the screen-printed electrode (SPE) surface. Both methods achieved an effective and reliable incorporation of redox mediators to the SPE configuration. Finally, a flow system for ammonium determination was developed using a glutamate dehydrogenase (GlDH)-Meldola’s Blue (MB)-polysulfone-composite film-based biosensor. The stability of the redox mediators inside the composite films as well as the negligible fouling effect observed on the electrode surface improve the repeatability and reproducibility of the sensors, important features for continuous analysis in flow systems. Furthermore, the optimised bio/sensors, incorporated in a flow injection system, showed good sensitivities and short response times. Such a good analytical performance together with the simple and fast sensor construction are interesting characteristics to consider the polysulfone-composite films as attractive electrochemical transducer materials for the development of new dehydrogenase-based SPEs
    corecore