137 research outputs found

    Feasibility, Acceptability and Preliminary Outcomes of Embracing Your Life: An Online Self-Compassion Program for Emerging Adults

    Get PDF
    Due to the psychological toll COVID-19 has had on emerging adults, as well as normative mental health challenges of this developmental period, emerging adults are struggling more than ever with depression and loneliness. The objective of this study was to assess feasibility, acceptability, and preliminary psychosocial outcomes of Embracing Your Life, a self-compassion program for emerging adults, as self-compassion is associated with better mental health. Thirty-nine emerging adults (Mage = 23.7, 67% female) enrolled in a 6-session online program from July 2020 to January 2022 participated in this study. Results indicated the program was feasible; 81% of participants attended at least five out of six sessions. Qualitative feedback indicated high acceptability, with recommended changes to make the program more interactive. Participants reported significant improvements in self-compassion, resilience, loneliness, depression, stress, and emotion regulation. Conclusions are that Embracing Your Life is a promising, accessible intervention to address the mental health of emerging adults

    Long-Term Profile Variability in Active Galactic Nuclei with Double-Peaked Balmer Emission Lines

    Get PDF
    An increasing number of Active Galactic Nuclei (AGNs) exhibit broad, double-peaked Balmer emission lines,which represent some of the best evidence for the existence of relatively large-scale accretion disks in AGNs. A set of 20 double-peaked emitters have been monitored for nearly a decade in order to observe long-term variations in the profiles of the double-peaked Balmer lines. Variations generally occur on timescales of years, and are attributed to physical changes in the accretion disk. Here we characterize the variability of a subset of seven double-peaked emitters in a model independent way. We find that variability is caused primarily by the presence of one or more discrete "lumps" of excess emission; over a timescale of a year (and sometimes less) these lumps change in amplitude and shape, but the projected velocity of these lumps changes over much longer timescales (several years). We also find that all of the objects exhibit red peaks that are stronger than the blue peak at some epochs and/or blueshifts in the overall profile, contrary to the expectations for a simple, circular accretion disk model, thus emphasizing the need for asymmetries in the accretion disk. Comparisons with two simple models, an elliptical accretion disk and a circular disk with a spiral arm, are unable to reproduce all aspects of the observed variability, although both account for some of the observed behaviors. Three of the seven objects have robust estimates of the black hole masses. For these objects the observed variability timescale is consistent with the expected precession timescale for a spiral arm, but incompatible with that of an elliptical accretion disk. We suggest that with the simple modification of allowing the spiral arm to be fragmented, many of the observed variability patterns could be reproduced.Comment: 74 pages, 4 tables, 35 figure

    The Impact of Cluster Structure and Dynamical State on Scatter in the Sunyaev-Zel'dovich Flux-Mass Relation

    Full text link
    Cosmological constraints from cluster surveys rely on accurate mass estimates from the mass-observable relations. In order to avoid systematic biases and reduce uncertainties, we study the form and physical origin of the intrinsic scatter about the mean Sunyaev-Zel'dovich (SZ) flux-mass relation using a hydrodynamical simulation of galaxy cluster formation. We examine the assumption of lognormal scatter and detect non-negligible positive skewness and kurtosis (> 0.5) for a wide range of limiting masses and redshifts. These higher-order moments should be included in the parametrization of scatter in order not to bias cosmological constraints. We investigate the sources of the scatter by correlating it with measures of cluster morphology, halo concentration, and dynamical state, and we quantify the individual contribution from each source. We find that statistically the impact of dynamical state is weak, so the selection bias due to mergers is negligible. On the other hand, there is a strong correlation between the scatter and halo concentration, which can be used to reduce the scatter significantly (from 12.07% to 7.34% or by ~40% for clusters at z = 0). We also show that a cross-calibration by combining information from X-ray followups can be used to reduce the scatter in the flux-mass relation and also identify outliers in both X-ray and SZ cluster surveys.Comment: 14 pages, 12 figures; accepted for publication in Ap

    An HI Threshold for Star Cluster Formation in Tidal Debris

    Full text link
    Super star clusters are young, compact star clusters found in the central regions of interacting galaxies. Recently, they have also been reported to preferentially form in certain tidal tails, but not in others. In this paper, we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary Camera 2 images of eight tidal tail regions of four merging galaxy pairs to compare the kiloparsec scale HI distribution with the location of super star clusters found from the optical images. For most of the tails, we find that there is an increase in super star cluster density with increasing projected HI column density, such that the star cluster density is highest when log N(HI) >= 20.6 cm^{-2}, but equal to the background count rate at lower HI column density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no significant star cluster population despite the presence of gas at high column density. This implies that the N(HI) threshold is a necessary but not sufficient condition for cluster formation. Gas volume density is likely to provide a more direct criterion for cluster formation, and other factors such as gas pressure or strength of encounter may also have an influence. Comparison of HI thresholds needed for formation of different types of stellar structures await higher resolution HI and optical observations of larger numbers of interacting galaxies.Comment: 19 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Finding Apparent Horizons in Dynamic 3D Numerical Spacetimes

    Get PDF
    We have developed a general method for finding apparent horizons in 3D numerical relativity. Instead of solving for the partial differential equation describing the location of the apparent horizons, we expand the closed 2D surfaces in terms of symmetric trace--free tensors and solve for the expansion coefficients using a minimization procedure. Our method is applied to a number of different spacetimes, including numerically constructed spacetimes containing highly distorted axisymmetric black holes in spherical coordinates, and 3D rotating, and colliding black holes in Cartesian coordinates.Comment: 19 pages, 13 figures, LaTex, to appear in Phys. Rev. D. Minor changes mad

    Carbon isotope fractionation in protoplanetary disks

    Full text link
    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.Comment: 50 pages, 10 figures, accepted for publication in the Astrophysical Journa

    CIV Emission and the Ultraviolet through X-ray Spectral Energy Distribution of Radio-Quiet Quasars

    Full text link
    In the restframe UV, two of the parameters that best characterize the range of emission-line properties in quasar broad emission-line regions are the equivalent width and the blueshift of the CIV line relative to the quasar rest frame. We explore the connection between these emission-line properties and the UV through X-ray spectral energy distribution (SED) for radio-quiet (RQ) quasars. Our sample consists of a heterogeneous compilation of 406 quasars from the Sloan Digital Sky Survey and Palomar-Green survey that have well-measured CIV emission-line and X-ray properties (including 164 objects with measured Gamma). We find that RQ quasars with both strong CIV emission and small CIV blueshifts can be classified as "hard-spectrum" sources that are (relatively) strong in the X-ray as compared to the UV. On the other hand, RQ quasars with both weak CIV emission and large CIV blueshifts are instead "soft-spectrum" sources that are (relatively) weak in the X-ray as compared to the UV. This work helps to further bridge optical/soft X-ray "Eigenvector 1" relationships to the UV and hard X-ray. Based on these findings, we argue that future work should consider systematic errors in bolometric corrections (and thus accretion rates) that are derived from a single mean SED. Detailed analysis of the CIV emission line may allow for SED-dependent corrections to these quantities.Comment: AJ, in press; 39 pages, 11 figures, 3 table

    Ice Lines, Planetesimal Composition and Solid Surface Density in the Solar Nebula

    Full text link
    To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2-3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, we calculate the solid surface density in the solar nebula as a function of heliocentric distance and time. We find three effects that strongly favor giant planet formation: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) recent lab results (Collings et al. 2004) showing that the ammonia and water ice lines should coincide, and (3) the presence of a substantial amount of methane ice in the trans-Saturnian region. Our results show higher solid surface densities than assumed in the core accretion models of Pollack et al. (1996) by a factor of 3 to 4 throughout the trans-Saturnian region. We also discuss the location of ice lines and their movement through the solar nebula, and provide new constraints on the possible initial disk configurations from gravitational stability arguments.Comment: Version 2: reflects lead author's name and affiliation change, contains minor changes to text from version 1. 12 figures, 7 tables, accepted for publication in Icaru

    Breast cancer risk and hormone receptor status in older women by parity, age of first birth, and breastfeeding: a case-control study.

    Get PDF
    BACKGROUND: Early age at first birth and multiparity reduce the risk of estrogen receptor-progesterone receptor (ERPR)-positive breast cancer, whereas breastfeeding reduces the risk of both ERPR-positive and ERPR-negative cancers. METHODS: We used multivariable logistic regression analysis to investigate whether age at first birth ( or =25 years) and breastfeeding (ever/never) modify the long-term effect of parity on risk of ERPR-positive and ERPR-negative cancer using 1,457 incident breast cancer cases and 1,455 controls ages > or =55 years who participated in the Women's Contraceptive and Reproductive Experiences Study. RESULTS: Women who gave birth before age 25 years had a 36% reduced risk of breast cancer compared with nulligravida that was not observed for women who started their families at an older age (P(heterogeneity) = 0.0007). This protective effect was restricted to ERPR-positive breast cancer (P(heterogeneity) = 0.004). Late age at first birth increased the risk of ERPR-negative cancers. Additional births reduced the risk of ERPR-positive cancers among women with an early first birth (P(trend) = 0.0001) and among women who breastfed (P(trend) = 0.004) but not among older mothers or those who never breastfed. In women with a late first birth who never breastfed, multiparity was associated with increased risk of breast cancer. CONCLUSIONS: These findings suggest that the effect of parity on a woman's long-term risk of breast cancer is modified by age at first full-term pregnancy and possibly by breastfeeding

    The Influence of Concentration and Dynamical State on Scatter in the Galaxy Cluster Mass-Temperature Relation

    Full text link
    Using a hydrodynamics plus N-body simulation of galaxy cluster formation within a large volume and mock Chandra X-ray observations, we study the form and evolution of the intrinsic scatter about the best-fit X-ray temperature-mass relation for clusters. We investigate the physical origin of the scatter by correlating it with quantities that are closely related to clusters' formation and merging histories. We also examine the distribution of the scatter for merging and nonmerging populations, identified using halo merger trees derived from the simulation as well as X-ray substructure measures. We find a strong correlation between the scatter in the M-T_X relation and the halo concentration, in the sense that more concentrated clusters tend to be cooler than clusters with similar masses. No bias is found between the merging and relaxed clusters, but merging clusters generally have greater scatter, which is related to the properties of the distribution of halo concentrations. We also detect a signature of non-lognormality in the distribution of scatter for our simulated clusters both at z=0 and at z=1. A detailed comparison of merging clusters identified by substructure measures and by halo merger trees is given in the discussion. We conclude that, when cooling-related effects are neglected, the variation in halo concentrations is a more important factor for driving the intrinsic scatter in the M-T_X relation, while departures from hydrostatic equilibrium due to cluster mergers have a minor effect.Comment: Accepted for publication in ApJ (17 pages, 13 figures, double column), updated to match version to appear in Ap
    corecore