101 research outputs found
Blocking representation in the ERA-Interim driven EURO-CORDEX RCMs
While Regional Climate Models (RCMs) have been shown to yield improved simulations compared to General Circulation Model (GCM), their representation of large-scale phenomena like atmospheric blocking has been hardly addressed. Here, we evaluate the ability of RCMs to simulate blocking situations present in their reanalysis driving data and analyse the associated impacts on anomalies and biases of European 2-m air temperature (TAS) and precipitation rate (PR). Five RCM runs stem from the EURO-CORDEX ensemble while three RCMs are WRF models with different nudging realizations, all of them driven by ERA-Interim for the period 1981?2010. The detected blocking systems are allocated to three sectors of the Euro-Atlantic region, allowing for a characterization of distinctive blocking-related TAS and PR anomalies. Our results indicate some misrepresentation of atmospheric blocking over the EURO-CORDEX domain, as compared to the driving reanalysis. Most of the RCMs showed fewer blocks than the driving data, while the blocking misdetection was negligible for RCMs strongly conditioned to the driving data. A higher resolution of the RCMs did not improve the representation of atmospheric blocking. However, all RCMs are able to reproduce the basic anomaly structure of TAS and PR connected to blocking. Moreover, the associated anomalies do not change substantially after correcting for the misrepresentation of blocking in RCMs. The overall model bias is mainly determined by pattern biases in the representations of surface parameters during non-blocking situations. Biases in blocking detections tend to have a secondary influence in the overall bias due to compensatory effects of missed blockings and non-blockings. However, they can lead to measurable effects in the presence of a strong blocking underestimation.This work was funded by the Austrian Science Fund (FWF) under the project: Understanding Contrasts in high Mountain hydrology in Asia (UNCOMUN: I 1295-N29). This research was supported by the Faculty of Environmental, Regional and Educational Sciences (URBI), University of Graz, as well as the Federal Ministry of Science, Research and Economy (BMWFW) by funding the OeAD Grant Marietta Blau. This work was partially supported (JMG and SH) by the project MULTI-SDM (CGL2015-66583- R, MINECO/FEDER). DB was supported by the PALEOSTRAT (CGL2015-69699-R) project funded by the Spanish Ministry of Economy and Competitiveness (MINECO)
Lateral terrestrial water flow contribution to summer precipitation at continental scale – A comparison between Europe and West Africa with WRF‐Hydro‐tag ensembles
It is well accepted that summer precipitation can be altered by soil moisture condition. Coupled land surface – atmospheric models have been routinely used to quantify soil moisture – precipitation feedback processes. However, most of the land surface models (LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at the surface and in the subsurface, which potentially reduces the realism of the simulated soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial water flow to summer precipitation is assessed in two different climatic regions, Europe and West Africa, for the period June–September 2008. A version of the coupled atmospheric-hydrological model WRF-Hydro with an option to tag and trace land surface evaporation in the modelled atmosphere, named WRF-Hydro-tag, is employed. An ensemble of 30 simulations with terrestrial routing and 30 simulations without terrestrial routing is generated with random realizations of turbulent energy with the stochastic kinetic energy backscatter scheme, for both Europe and West Africa. The ensemble size allows to extract random noise from continental-scale averaged modelled precipitation. It is found that lateral terrestrial water flow increases the relative contribution of land surface evaporation to precipitation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – precipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed by a slight increase in normalized ensemble spread. This study demonstrates the small but non-negligible contribution of lateral terrestrial water flow to precipitation at continental scale
Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations
Daily precipitation statistics as simulated by the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble are evaluated over two distinct regions of the European continent, namely the European Alps and Spain. The potential added value of the high-resolution 12 km experiments with respect to their 50 km resolution counterparts is investigated. The statistics considered consist of wet-day intensity and precipitation frequency as a measure of mean precipitation, and three precipitation-derived indicators (90th percentile on wet days?90pWET, contribution of the very wet days to total precipitation?R95pTOT and number of consecutive dry days?CDD). As reference for model evaluation high resolution gridded observational data over continental Spain (Spain011/044) and the Alpine region (EURO4M-APGD) are used. The assessment and comparison of the two resolutions is accomplished not only on their original horizontal grids (approximately 12 and 50 km), but the high-resolution RCMs are additionally regridded onto the coarse 50 km grid by grid cell aggregation for the direct comparison with the low resolution simulations. The direct application of RCMs e.g. in many impact modelling studies is hampered by model biases. Therefore bias correction (BC) techniques are needed at both resolutions to ensure a better agreement between models and observations. In this work, the added value of the high resolution (before and after the bias correction) is assessed and the suitability of these BC methods is also discussed. Three basic BC methods are applied to isolate the effect of biases in mean precipitation, wet-day intensity and wet-day frequency on the derived indicators. Daily precipitation percentiles are strongly affected by biases in the wet-day intensity, whereas the dry spells are better represented when the simulated precipitation frequency is adjusted to the observed one. This confirms that there is no single optimal way to correct for RCM biases, since correcting some distributional features typically leads to an improvement of some aspects but to a deterioration of others. Regarding mean seasonal biases before the BC, we find only limited evidence for an added value of the higher resolution in the precipitation intensity and frequency or in the derived indicators. Thereby, evaluation results considerably depend on the RCM, season and indicator considered. High resolution simulations better reproduce the indicators? spatial patterns, especially in terms of spatial correlation. However, this improvement is not statistically significant after applying specific BC methods.The authors are grateful to Prof. C. Schär for his helpful comments and E. van Meijgaard for making available the RACMO model data. We acknowledge the observational data providers. Calculations for WRF311F were made using the TGCC super computers under the GENCI time allocation GEN6877. The WRF331A from CRP-GL (now LIST) was funded by the Luxembourg National Research Fund (FNR) through grant FNR C09/SR/16 (CLIMPACT). The KNMI-RACMO2 simulations were supported by the Dutch Ministry of Infrastructure and the Environment. The CCLM and REMO simulations were supported by the Federal Ministry of Education and Research (BMBF) and performed under the Konsortial share at the German Climate Computing Centre (DKRZ). The CCLM simulations were furthermore supported by the Swiss National Supercomputing Centre (CSCS) under project ID s78. Part of the SMHI contribution was carried out in the Swedish Mistra-SWECIA programme founded by Mistra (the Foundation for Strategic Environmental Research). This work is supported by CORWES (CGL2010-22158-C02) and EXTREMBLES (CGL2010-21869) projects funded by the Spanish R&D programme and the European COST ACTION VALUE (ES1102). A. C. thanks the Spanish Ministry of Economy and Competitiveness for the funding provided within the FPI programme (BES-2011-047612 and EEBB-I-13-06354). We also thank two anonymous referees for their useful comments that helped to improve the original manuscript
Storylines: an alternative approach to representing uncertainty in physical aspects of climate change
As climate change research becomes increasingly applied, the need for actionable information is growing rapidly. A key aspect of this requirement is the representation of uncertainties. The conventional approach to representing uncertainty in physical aspects of climate change is probabilistic, based on ensembles of climate model simulations. In the face of deep uncertainties, the known limitations of this approach are becoming increasingly apparent. An alternative is thus emerging which may be called a ‘storyline’ approach. We define a storyline as a physically self-consistent unfolding of past events, or of plausible future events or pathways. No a priori probability of the storyline is assessed; emphasis is placed instead on understanding the driving factors involved, and the plausibility of those factors. We introduce a typology of four reasons for using storylines to represent uncertainty in physical aspects of climate change: (i) improving risk awareness by framing risk in an event-oriented rather than a probabilistic manner, which corresponds more directly to how people perceive and respond to risk; (ii) strengthening decision-making by allowing one to work backward from a particular vulnerability or decision point, combining climate change information with other relevant factors to address compound risk and develop appropriate stress tests; (iii) providing a physical basis for partitioning uncertainty, thereby allowing the use of more credible regional models in a conditioned manner and (iv) exploring the boundaries of plausibility, thereby guarding against false precision and surprise. Storylines also offer a powerful way of linking physical with human aspects of climate change
Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale
African society is particularly vulnerable to climate change. The representation of convection in climate models has so far restricted our ability to accurately simulate African weather extremes, limiting climate change predictions. Here we show results from climate change experiments with a convection-permitting (4.5 km grid-spacing) model, for the first time over an Africa-wide domain (CP4A). The model realistically captures hourly rainfall characteristics, unlike coarser resolution models. CP4A shows greater future increases in extreme 3-hourly precipitation compared to a convection-parameterised 25 km model (R25). CP4A also shows future increases in dry spell length during the wet season over western and central Africa, weaker or not apparent in R25. These differences relate to the more realistic representation of convection in CP4A, and its response to increasing atmospheric moisture and stability. We conclude that, with the more accurate representation of convection, projected changes in both wet and dry extremes over Africa may be more severe
Northward shift of the agricultural climate zone under 21st-century global climate change
As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21st-century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions
Recommended from our members
Anthropogenic intensification of short-duration rainfall extremes
Short- duration (1-3 h) rainfall extremes can cause serious damage to societies through rapidly developing (flash) flooding and are determined by complex, multifaceted processes that are altering as Earth's climate warms. In this Review, we examine evidence from observational, theoretical and modelling studies for the intensification of these rainfall extremes, the drivers and the impact on flash flooding. Both short- duration and long- duration (\textgreater1 day) rainfall extremes are intensifying with warming at a rate consistent with the increase in atmospheric moisture (~7% K-1), while in some regions, increases in short- duration extreme rainfall intensities are stronger than expected from moisture increases alone. These stronger local increases are related to feedbacks in convective clouds, but their exact role is uncertain because of the very small scales involved. Future extreme rainfall intensification is also modulated by changes to temperature stratification and large- scale atmospheric circulation. The latter remains a major source of uncertainty. Intensification of short- duration extremes has likely increased the incidence of flash flooding at local scales and this can further compound with an increase in storm spatial footprint to considerably increase total event rainfall. These findings call for urgent climate change adaptation measures to manage increasing flood risks
Recommended from our members
The impacts of climate change on the winter water cycle of the western Himalaya
Some 180 million people depend on the Indus River as a key water resource, fed largely by precipitation falling over the western Himalaya. However, the projected response of western Himalayan precipitation to climate change is currently not well constrained: CMIP5 GCMs project a reduced frequency and vorticity of synoptic-scale systems impacting the area, but such systems would exist in a considerably moister atmosphere.
In this study, a convection-permitting (4 km horizontal resolution) setup of the Weather Research and Forecasting (WRF) model is used to examine 40 cases of these synoptic-scale systems, known as western disturbances (WDs), as they interact with the western Himalaya. In addition to a present-day control run, three experiments are performed by perturbing the boundary and initial conditions to reflect pre-industrial, RCP4.5 and RCP8.5 background climates respectively.
It is found that in spite of the weakening intensity of WDs, net precipitation associated with them in future climate scenarios increases significantly; conversely there is no net change in precipitation between the pre-industrial and control experiments despite a significant conversion of snowfall in the pre-industrial experiment to rainfall in the control experiment, consistent with the changes seen in historical observations.
This shift from snowfall to rainfall has profound consequences on water resource management in the Indus Valley, where irrigation is dependent on spring meltwater. Flux decomposition shows that the increase in future precipitation follows directly from the projected moistening of the tropical atmosphere (which increases the moisture flux incident on the western Himalaya by 28%) overpowering the weakened dynamics (which decreases it by 20%).
Changes to extreme rainfall events are also examined: it is found that such events may increase significantly in frequency in both future scenarios examined.
Two-hour maxima rainfall events that currently occur in 1-in-8 WDs are projected to increase tenfold in frequency in the RCP8.5 scenario; more prolonged (one-week maxima) events are projected to increase fiftyfold
Cytogenetic changes in fish exposed to water of the river Rhine
The induction of chromosome aberrations in fishes, exposed to Rhinewater, was investigated. The mudminnow, Umbra pygmaea, was chosen for this study, because of its ideal karyotype of 22 large chromosomes. Gill cells were used for chromosome studies. Fish, kept in Rhinewater for 11 days had chromosome breaks in approximately 30% of the metaphases studied. Control fish, exposed to a very good quality of untreated groundwater had breaks in about 8% of the metaphases. Several Rhinewater extracts were tested for their mutagenic potential in the Salmonella-microsome test. The fraction of aromatic compounds was found to be positive. This may indicate that one or more of the compounds present in this fraction were also responsible for the cytogenetic changes found in the fis
- …