681 research outputs found

    PAT-based design of agrochemical co-crystallization processes : a case-study for the selective crystallization of 1:1 and 3:2 co-crystals of p-toluenesulfonamide/triphenylphosphine oxide

    Get PDF
    In this study, the selective crystallization and characterization of the stoichiometric forms of the p-toluenesulfonamide/triphenylphosphine oxide (p-TSA-TPPO) co-crystal system in acetonitrile (MeCN) is demonstrated using batch and semi-batch crystallizers. In the batch study, both 1:1 and 3:2 p-TSA-TPPO were successfully isolated as pure forms. However, process variability was observed in a few experimental runs. To address the batch process variability issue, a control strategy was implemented using temperature cycling, aided by in situ process analytical technologies (PAT) to convert from 3:2 to 1:1 p-TSA-TPPO. In the semi-batch co-crystallization studies, the two molecular co-formers, p-TSA and TPPO, were dissolved in MeCN and pumped separately to the crystallizer. Changing the flow rates of the respective active ingredients allowed control over the co-crystallization outcome, and presents as a promising opportunity for development of a continuous co-crystallization process

    Novel POLG variants associated with late-onset de novo status epilepticus and progressive ataxia

    Get PDF
    Mitochondrial disease is phenotypically and genetically heterogeneous with an estimated prevalence of 1 in 4,300.1 Mutations in the POLG gene, encoding the catalytic subunit of DNA polymerase gamma, are an important cause of mitochondrial disease. The spectrum of clinical manifestations in POLG-related mitochondrial disease is variable,2 with disease onset ranging from adulthood-onset dominant or recessive progressive external ophthalmoplegia (chronic progressive external ophthalmoplegia), ataxia-neuropathy spectrum, myoclonic epilepsy, myopathy, and sensory ataxia to childhood-onset Alpers syndrome, which is characterized by intractable seizures, psychomotor regression, and hepatic impairment. Epilepsy is a poor prognostic factor in POLG mutations,3 and the onset of epilepsy often clusters in childhood (<5 years) and teenage.4 However, late-onset epileptic encephalopathy is uncommon.4,5 Herein, we describe a patient who died of de novo, late-onset refractory status epilepticus with the identification of 2 novel variants in the POLG gene

    PAT-based design of agrochemical co-crystallization processes: a case-study for the selective crystallization of 1:1 and 3:2 co-crystals of p-toluenesulfonamide/triphenylphosphine oxide

    Get PDF
    In this study, the selective crystallization and characterization of the stoichiometric forms of the p-toluenesulfonamide/triphenylphosphine oxide (p-TSA-TPPO) co-crystal system in acetonitrile (MeCN) is demonstrated using batch and semi-batch crystallizers. In the batch study, both 1:1 and 3:2 p-TSA-TPPO were successfully isolated as pure forms. However, process variability was observed in a few experimental runs. To address the batch process variability issue, a control strategy was implemented using temperature cycling, aided by in situ process analytical technologies (PAT) to convert from 3:2 to 1:1 p-TSA-TPPO. In the semi-batch co-crystallization studies, the two molecular co-formers, p-TSA and TPPO, were dissolved in MeCN and pumped separately to the crystallizer. Changing the flow rates of the respective active ingredients allowed control over the co-crystallization outcome, and presents as a promising opportunity for development of a continuous co-crystallization process

    Ab-initio study of BaTiO3 surfaces

    Full text link
    We have carried out first-principles total-energy calculations of (001) surfaces of the tetragonal and cubic phases of BaTiO3. Both BaO-terminated (type I) and TiO2-terminated (type II) surfaces are considered, and the atomic configurations have been fully relaxed. We found no deep-gap surface states for any of the surfaces, in agreement with previous theoretical studies. However, the gap is reduced for the type-II surface, especially in the cubic phase. The surface relaxation energies are found to be substantial, i.e., many times larger than the bulk ferroelectric well depth. Nevertheless, the influence of the surface upon the ferroelectric order parameter is modest; we find only a small enhancement of the ferroelectricity near the surface.Comment: 8 pages, two-column style with 4 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#pad_sur

    New determination of the D0→K−π+π0 and D0→K−π+π+π− coherence factors and average strong-phase differences

    Get PDF
    AbstractMeasurements of the coherence factors (RKππ0 and RK3π) and the average strong-phase differences (δDKππ0 and δDK3π) for the decays D0→K−π+π0 and D0→K−π+π+π− are presented. These parameters are important inputs to the determination of the unitarity triangle angle γ in B∓→DK∓ decays, where D designates a D0 or D¯0 meson decaying to a common final state. The measurements are made using quantum correlated DD¯ decays collected by the CLEO-c experiment at the ψ(3770) resonance, and augment a previously published analysis by the inclusion of new events in which the signal decay is tagged by the mode D→KS0π+π−. The measurements also benefit from improved knowledge of external inputs, namely the D0D¯0 mixing parameters, rDKπ and several D-meson branching fractions. The measured values are RKππ0=0.82±0.07, δDKππ0=(164−14+20)°, RK3π=0.32−0.28+0.20 and δDK3π=(225−78+21)°. Consideration is given to how these measurements can be improved further by using the larger quantum-correlated data set collected by BESIII

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
    • …
    corecore