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ABSTRACT 

In this study, the selective crystallization and characterization of the stoichiometric forms 

of the p-Toluenesulfonamide/Triphenylphosphine oxide (p-TSA-TPPO) co-crystal system in 

acetonitrile (MeCN) is demonstrated using batch and semi-batch crystallizers. In the batch 

study, both 1:1 and 3:2 p-TSA-TPPO were successfully isolated as pure forms. However, 
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process variability was observed in a few experimental runs. To address the batch process 

variability issue, a control strategy was implemented using temperature cycling, aided by in 

situ process analytical technologies (PAT) to convert from 3:2 to 1:1 p-TSA-TPPO. In the 

semi-batch co-crystallization studies, the two molecular co-formers, p-TSA and TPPO, were 

dissolved in MeCN and pumped separately to the crystallizer. Changing the flow rates of the 

respective active ingredients allowed control over the co-crystallization outcome, and 

presents as a promising opportunity for development of a continuous co-crystallization 

process. 

Keywords: Co-crystallization, Co-crystal, Stoichiometric, Process Analytical Technologies 

1. INTRODUCTION 

In the agrochemical industry there is a need for the development and application of new 

active ingredient design strategies to deliver solutions for the discovery of agrochemicals that 

are fit for purpose in the 21
st
 century [1]. For example, there is a need to reduce absolute 

usage of active agrochemical ingredients (AAIs) to minimise environmental impact. To 

achieve this, a structure-based design approach to AAI production is required. Structure-

based design is an iterative and multi-disciplinary process that is well established in the 

pharmaceutical industry [2]. It has played an important role in the development of several 

registered drugs and clinical candidates [1], [2], for example, zanamivir [3], lopinavir–

ritonavir and nelfinavir [4]. In contrast, structure-based design is a relatively new concept in 

the agrochemical industry, and there are currently no products on the market that are the 

direct result of this approach [1]. In recent years structure-based design of multi-component 

molecular systems has gained popularity in the pharmaceutical sector as a viable alternative 

to traditional design approaches used to modify active pharmaceutical ingredients (APIs) for 

more effective performance. Modifications of the structure and molecular composition of an 
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active ingredient by applying structure-based design principles can lead to significant 

improvements to the stability, solubility and release profile. This could lead to a reduction in 

use rates of AAIs, and hence a minimised environmental impact. For example, the release 

profile of an AAI could be controlled through the design of multi-component molecular 

entities such as co-crystals. Furthermore, multi-component systems offer the opportunity to 

delivery not just one, but two or more AAIs simultaneously, which could potentially 

minimize operating cost and equipment foot print through simplification of manufacturing 

processes. 

The definition of a co-crystal has been widely debated in the scientific community [5], [6], 

however, there is now a general consensus since the publication of FDA guidelines [7] that a 

co-crystal is a crystalline multi-component molecular entity made up of two or more 

components in a definite stoichiometric ratio. Co-crystallization can be an effective crystal 

engineering approach for modifying the crystal structure and properties of an active 

ingredient [8], [9]. However, many of the current methods used to isolate co-crystal forms 

such as neat and liquid assisted grinding [10], [11], slurry conversion [12], [13], supercritical 

fluid enhanced atomization [14], and evaporative co-crystallization [13], [15], [16] cannot be 

scaled to industrial production capacity. Cooling crystallization is perhaps the most viable 

route to scale-up, yet there are only a few studies that have explored this method to isolate 

co-crystals [17]–[19]. There are even fewer studies that are carried out using large scale 

laboratory crystallizers (that is, 500 – 1L capacity) [17], [18]. In addition, there is limited use 

of process analytical technologies (PAT) to monitor, control and characterize co-

crystallization processes [16], [18]. 

In this study, the co-crystallization of two model AAIs, p-Toluenesulfonamide (p-TSA) and 

Triphenylphosphine oxide (TPPO) is demonstrated as part of a proof of concept study using 
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laboratory scale (500 mL) batch and semi-batch crystallizers. The aim of this study is to 

monitor, control and fully characterize the crystalline forms of the resulting multi-component 

AAI co-crystals using an integrated array of PAT tools, crystallization process informatics 

systems (CryPRINS) software, and off-line solid state characterization techniques. p-TSA 

and its derivatives are widely used as raw materials for the synthesis of pesticides, drugs and 

fluorescent colorants [20], [21]. There are two known polymorphs of p-TSA, α form 

(monoclinic) differs from the β form (triclinic), which has a unusual arrangement of layers 

[22]. TPPO finds use in the production of crop protection products, anti-fungal coatings, 

vitamins, and APIs [23], [24]. There are three known polymorphic forms of TPPO [25], [26], 

one orthorhombic and two monoclinic forms. Etter and Baures [26] were amongst the first to 

isolate co-crystals of TPPO. They were able to successfully co-crystallized TPPO with 15 

different molecular entities, inclusive of several derivatives of p-TSA.  

There are two known stoichiometric forms of the p-TSA-TPPO co-crystal system 

composed of 1:1 and 3:2 mole ratios of p-TSA and TPPO respectively. There are no known 

polymorphic forms of these two stoichiometric co-crystal forms. Glidewell et al. [27], [28] 

isolated the 3:2 form of p-TSA-TPPO and reported on the crystal and molecular structures. 

The authors used a small scale reactive crystallization method whereby triphenylphosphine 

(TPP) was reacted with Chloramine-T(n-chloro p-toluenesulfonamide sodium salt) in 

ethanol; the product was then recrystallized from anhydrous benzene. Croker et al. [13] 

isolated and reported the crystal structure of the 1:1 form of p-TSA-TPPO. In their work solid 

state grinding and small scale evaporative (10 mL) and cooling (50 mL) crystallization 

methods were applied. They also constructed two ternary phase diagrams at 20 
o
C for the two 

co-former molecules (p-TSA and TPPO) in acetonitrile (MeCN) and dichloromethane 

(CH2Cl2) solvents respectively. Subsequent studies examined the nucleation behavior [29], 
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isothermal suspension conversion [6] and solution-mediated phase transformation [30] of the 

two co-crystal forms. 

In this study, a control strategy employing a temperature cycling approach was 

implemented in the batch cooling co-crystallization process where variability was detected. 

This was aided by an integrated array of PAT tools consisting of Raman, attenuated total 

reflectance ultra-violet/visible (ATR-UV/vis) and Fourier transform infrared (ATR-FTIR) 

spectroscopy, focused beam reflectance measurement (FBRM) and particle vision 

microscopy (PVM) with complementary solid state characterization techniques were used for 

intelligent decision support (IDS) and control of the co-crystallization processes using the 

crystallization process informatics system (CryPRINS). Complementary off-line solid state 

characterization techniques, comprising powder x-ray diffraction (PXRD), differential 

scanning calorimetry (DSC), hot stage microscopy (HSM), scanning electron 

microscopy/energy dispersive spectroscopy (SEM), Raman microscopy and FTIR 

spectroscopy were used for phase identification. In the semi-batch operation, a flow rate 

control strategy also aided by PAT and off-line analysis, whereby the two co-formers are 

dissolved and pumped separately to a crystallizer unit was demonstrated as a viable option for 

controlling the co-crystallization outcome.  This approach shows promise for further 

development into a continuous co-crystallization process. The batch and semi-batch co-

crystallization studies at a larger scale (500 mL) compared to previous works to examine the 

scalability of the p-TSA-TPPO system. A further aim of the study is to monitor and control 

the selective co-crystallization of the 1:1 and 3:2 co-crystal forms of the p-TSA-TPPO 

system, applying the array of PAT tools to gain better process understanding.  
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2. MATERIALS AND METHODS 

2.1 Chemicals 

Crystallizations were carried out using MeCN as solvent and the resulting co-crystal 

complexes, 1:1 p-TSA-TPPO and 3:2 p-TSA-TPPO characterized using different solid-state 

techniques. Figure 1 shows the chemical structures of the starting materials (top) and crystal 

structures of the co-crystals (bottom). Acetonitrile (MeCN, Analytical Reagent Grade, 99.9 %) 

was obtained from Fisher Scientific, UK. p-Toluenesulfonamide (p-TSA, 99 %) and 

triphenylphosphine oxide (TPPO, 99 %) were obtained from Sigma-Aldrich, UK and used as 

received. The structure of 1:1 p-TSA-TPPO consists of cyclic centrosymmetric aggregates in 

which two molecules of p-TSA are linked to two molecules of TPPO via two point hydrogen 

bonds of the type :O----H–N(SO2Ph)–H----O: as shown in Figure 1, with a lone pair of 

electrons on the oxygen of TPPO. The 3:2 p-TSA-TPPO co-crystal is also made up of cyclic 

centrosymmetric aggregates, but with three molecules of p-TSA linked to two molecules of 

TPPO via a network of six linear hydrogen bonds of the type O----H–N(SO2Ph)–H----O, with 

no lone pair electrons on the oxygen of TPPO. 

 

Figure 1. Chemical structures of p-TSA and TPPO (top) and crystal structures of 1:1 and 

3:2 p-TSA-TPPO co-crystals (bottom). Adopted from Croker et al. [6]. 
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In this study, the ternary phase diagram of p-TSA/TPPO/MeCN at 20 
o
C, Figure 2, 

developed by Croker et al [13] was used as a guide for producing pure 1:1 and 3:2 p-TSA-

TPPO co-crystal forms (Regions 1 and 2), and mixtures (Region 3), albeit at different operating 

temperatures. The study aims to demonstrate that control over the co-crystallization process in 

batch and semi-batch crystallizer platforms is possible even under different operating 

conditions. 

 

Figure 2. Ternary phase diagram (axes in mass fraction) for the p-TSA/TPPO/MeCN at 

20 °C. (1) 3:2 co-crystal form stable; (2) 1:1 co-crystal form stable; (3) Mixtures of 1:1 and 

3:2 forms stable. Adopted from Croker et al. [13]. 

2.2 Solid State Characterization 

Powder X-ray diffraction (PXRD) studies were carried out using a Bruker D2 Phaser 

bench-top X-ray diffractometer with Cu Kα radiation source. A 3 mm anti-scatter slit was 

used with a programmable divergent slit of 1 mm. A 1.5
o
 Soller slit was employed and 

diffractograms were collected between 5 and 90
o
 2θ with a step size of 0.02

o
. In preparation 

for PXRD analysis, samples were mounted and spread evenly onto 12 mm discs. 

 

1 2 

3 

3:2 1:1 
   p-TSA TPPO 

MeCN 
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A Thermo Scientific DXR
TM

 Raman Microscope equipped with 780 nm laser, Olympus 

TH4 200 optical component, and Linkam THMS600 heating/freezing stage was used for 

phase identification, polymorph characterization and image analysis. The full spectral range 

of the instrument (50 – 3500 cm
-1

) was captured with a single exposure of the 

charged-coupled-device (CCD). Samples for polymorph screening and imaging were 

mounted on glass slides and analysed using either, x4, x10 or x50 objective, resulting in spot 

sizes of 7.9, 3.8 and 1.3 µm respectively. Raman spectra were collected using the 50 µm slit 

and a laser setting of 15 mW. The number of scans and exposure time for each sample was 10 

x 10 s. The instrument settings led to estimated resolution of 4.7 – 8.7 cm
-1

. Data processing 

and analysis was carried out using Thermo Scientific OMNIC
TM

 Series Raman software and 

TQAnalyst
TM 

 version 8.0 software. 

Hot stage microscopy (HSM) studies were carried out using the Linkam THMS600 unit. 

The stage body fitted quick-to-fit gas port was connected to a LNP95 cooling pump to control 

the sample atmosphere using a dry nitrogen flow. Samples were loaded onto a 0.17 mm thick 

cover slip and placed on a highly polished pure silver heating element to ensure good heat 

transfer and sensitive temperature measurements. Samples were equilibrated at 100 
o
C, 

followed by controlled heating at a rate of 1 
o
C/min to 180 

o
C. Images were captured 

whenever phase changes were detected. 

A Thermo Scientific Nicolet™ iS™50 FT-IR benchtop spectrometer with a KBr beam 

splitter and DTGS ATR detector was used as a complementary tool to Raman spectroscopy 

for phase identification and polymorph characterization. The spectral range of the instrument 

was 400 – 4000 cm
-1

. Prior to analysis a background reading (5 scans averaged) was taken in 

air to eliminate interferences from CO2, H2O and other atmospheric gases. Samples were then 

mounted on the ATR iS50 window and fixed in place using a sample holder supplied with the 
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instrument. The instrument was set to absorbance mode and 10 scans were recorded and 

averaged over 10 seconds for each sample, leading to a spectral resolution of 4 cm
-1

. Data 

processing and analysis was carried out using Thermo Scientific OMNIC
TM

 Series FT-IR 

software and TQAnalyst
TM 

version 8.0 software. 

DSC analyses were carried out using a Thermal Advantage DSC Q20 fitted with a Thermal 

Advantage 90 cooling system, using nitrogen gas at a flow rate of 18 cm
3
/min. Each sample 

was equilibrated at 40 
o
C for 2 min followed by heating at a rate of 5 

o
C/min to 250 

o
C. Data 

were collected and processed using the Instruments-Waters LLC Advantage Qseries version 

5.4.0 software package supplied with the instrument.  

Scanning Electron Microscopy (SEM) studies were carried out using a Carl Zeiss 1530 VP 

high resolution field emission gun scanning electron microscope (FEGSEM). Samples were 

prepared for SEM analysis using a bench-top Quorum Q150T ES gold sputter coater/carbon 

evaporator coating system with turbo-molecular pump. The system was used to coat each 

sample with a thin film of gold-palladium prior to analysis. 

HPLC analyses were performed using a Hewlett Packard HP1100 Series chromatograph 

with a DAD.G1315A diode array detector using a Waters Spherisorb C8 Column (80Å, 

5 µm, 4.6 mm × 250 mm) eluting with MeCN:H2O (80:20) at 1 mL/min and UV detection at 

254 nm. 

2.2  Batch Co-Crystallization Study 

Small scale batch co-crystallization studies (1 – 50 mL) on the p-TSA-TPPO system have 

previous been reported [6], [13], [29]. The co-crystallization experiments were carried out in 

a 500 mL jacketed glass vessel fitted with an overhead PTFE pitch blade stirrer. The jacket 

was connected to a Thermofluid bath (Huber ministat 230) for temperature control. 
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Temperature profiles were implemented and data recorded using CryPRINS software 

(version 2.0). A RXN1 Raman spectrometer from Kaiser Optical Inc. with 785 nm laser 

source and immersion probe was used for in situ real-time monitoring of the co-crystal forms 

of p-TSA-TPPO. FBRM
®

 D600 and PVM
®
 instruments from Mettler Toledo were used for 

nucleation and dissolution detection, and to tracking the evolution of crystal properties (size 

shape and distribution). An ATR-UV/vis spectrometer fitted with Helma 661.820-UV 

immersion probe or Thermofisher FTIR spectrometer fitted with artphotonics ATR Silicium 

SN 210 immersion probe was used to monitor changes in the solution phase. A schematic 

representation of the experimental set-up used is shown in Figure 3.  

 

Figure 3. Schematic of batch crystallizer used for the cooling co-crystallization 

experiments.  

For each experimental run, the required amount of p-TSA, TPPO and MeCN were added to 

the reactor and heated to 30, 60 or 70 
o
C to dissolve the solids (depending on the initial 

loading of starting materials) at a rate of 1 
o
C/min. The vessel was held for 15 min to allow 

complete dissolution of the materials, followed by cooling at a rate of -1.0 
o
C/min to a final 

temperature of either 20 or 5 
o
C, and holding for 1 hour (experiments 1 – 4). For experiments 

5 – 9 ramped temperature profiles were implemented, the heating/cooling rate regime was 0.2 
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/ - 0.2 
o
C/min. The impeller speed for all experiments was set to 400 rpm, which corresponds 

to an approximate power per unit volume of 0.075 kW/m
3
. Table 1 gives a summary of the 

experimental conditions for each run. The material from each experimental run was isolated 

at the end of the batch time by vacuum filtration. The wet solid collected was then dried 

overnight at 40 
o
C. 

Table 1. Summary of experimental conditions employed during the batch crystallization of 

p-TSA-TPPO co-crystals. 

Exp 

No. 

p-TSA 

(g/g 

MeCN) 

TPPO 

(g/g 

MeCN) 

Temperature  

(
o
C) 

Heating / 

Cooling Rates 

(
o
C/min) 

Component Mass Fractions 

(M) 

Region of 

Phase 

Diagram at 

20 
o
C 

Initial Final p-TSA TPPO MeCN 

1 0.1147 0.1532 60 20 / 5
*
 1.0 / -1.0 0.09 0.12 0.79 2 (1:1 form) 

2 0.2634 0.1247 60 20 / 5
*
 1.0 / -1.0 0.19 0.09 0.72 1 (3:2 form) 

3 0.5776 0.4202 70 5 1.0 / -1.0 0.29 0.21 0.50 1 (3:2 form) 

4 0.3793 0.6193 70 5 1.0 / -1.0 0.19 0.31 0.50 2 (1:1 form) 

5 0.0706 0.1059 30 5 0.2 / -0.2 0.06 0.09 0.85 2 (1:1 form) 

(6) 0.1728 0.0617 30 5 0.2 / -0.2 0.14 0.05 0.81 1 (3:2 form) 

(7) 0.1049 0.0968 30 20 0.2 / -0.2 0.09 0.08 0.83 3 (Mixture) 

8 0.1084 0.0964 30 20 0.2 / -0.2 0.09 0.08 0.83 3 (Mixture) 

9 0.0833 0.1071 30 5 0.2 / -0.2 0.07 0.09 0.84 2 (1:1 form) 
*Cooled to 20 oC and held for 60 min, followed by cooling to 5 oC and holding for 60 min; ( ) Temperature cycles 

implemented. 

2.2 Semi-Batch Co-Crystallization Study 

A series of semi-batch development experiments were performed to determine the most 

suitable conditions for the selective crystallization of the 1:1 and 3:2 stoichiometric co-crystal 

forms of the p-TSA-TPPO co-crystals system. The combination of p-TSA/TPPO/MeCN was 

varied on a mass fraction basis by changing the flow rate of each co-former. All experiments 

were carried out using the experimental set-up described in section 2.1 (Figure 3). The 

required amount of p-TSA and TPPO were dissolved in separate vessels to generate 

undersaturated solutions according to Table 2. Solutions were prepared by heating 
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suspensions of p-TSA and TPPO in MeCN to 30 
o
C and then holding for 15 min to allow 

complete dissolution of the materials. The resulting solutions were then cooled to 25 
o
C and 

pumped separately to the 500 mL crystallizer vessel kept at 20 
o
C. Figure 4 shows a flow 

diagram of the experimental set-up used. 

 

Figure 4. Flow diagram showing the configuration of the semi-batch experimental set-up 

used during the co-crystallization studies. 

Calibrated and pre-programmed Masteflex
®
 pumps fitted with 3.1 mm ID platinum cured 

tubing were used to pump p-TSA-MeCN and TPPO-MeCN solutions to the batch crystallizer. 

The flow rates of p-TSA and TPPO solutions were varied from 15 to 32.7 g/min and 20 to 

37.7 g/min respectively. The targeted combined flow rate of the two streams was 52.7 g/min 

for each experimental run. Pumps were programmed to operate for 6.71 min, leading to the 

delivery of approximately 493 mL of combined p-TSA-TPPO-MeCN solution to the 

crystallizer, which was initially empty. A holding period of approximately 60 min was 

implemented after the crystallizer was filled. For all experiments, the impeller speed of the 

crystallizer was set to 400 rpm. Table 2 provides a summary of the conditions employed 

during each experimental run. 
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Table 2. Summary of experimental conditions employed during the semi-batch 

crystallization of p-TSA-TPPO co-crystals. 

Exp 

No. 

p-TSA 

(g/g 

MeCN) 

TPPO 

(g/g 

MeCN) 

Solution Flow Rates  

(g/min) 

Mass Fractions (M) 

in Crystallizer 

Region of 

Phase 

Diagram at 

20 
o
C 

p-TSA soln. TPPO soln. p-TSA TPPO MeCN 

10 0.2987 0.1482 28 24.7 0.12 0.09 0.79 1 (3:2 form) 

11 0.2987 0.1482 32.7 20.0 0.14 0.05 0.81 1 (3:2 form) 

12 0.2987 0.1482 20.0 32.7 0.09 0.08 0.83 3 (mixture) 

13 0.2987 0.1482 15.0 37.7 0.06 0.09 0.85 2 (1:1 form) 

14 0.4625 0.2016 20.0 32.7 0.12 0.12 0.76 2 (1:1 form) 

15 0.2987 0.1482 23.4 29.3 0.10 0.08 0.83 3 (mixture) 

16 0.2987 0.1482 17.7 35 0.08 0.08 0.84 3 (mixture) 

17 0.2987 0.1482 27.5 25.2 0.11 0.07 0.82 1 (3:2 form) 

3. RESULTS AND DISCUSSION 

The ternary phase diagram for p-TSA/TPPO/MeCN was constructed and fully explored by 

Croker et al. [13] using small scale experiments. In the current work, the mass fractions of 

p-TSA/TPPO/MeCN were varied according to the ternary phase diagram shown in Figure 2. 

The phase diagram was used as a guide to selecting conditions that favor the formation of either 

the 3:2 or 1:1 co-crystal forms, as well as conditions that favor the formation of mixtures of the 

two forms. 

3.1 Solid State and Solution Phase Characterizations 

The raw materials p-TSA, TPPO and MeCN were characterized both in the solid phase 

(using PXRD, off-line Raman and ATR-FTIR spectroscopy, HPLC, DSC and SEM) and 

solution phase (using in situ Raman spectroscopy). The solid and liquid phase 

characterizations were later compared to samples acquired from each of the batch 

experimental runs. In house reference samples for the 1:1 and 3:2 p-TSA-TPPO co-crystal 
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forms were prepared according to the procedures of Croker et al. [13], [29], solid state 

characterizations were carried out using the techniques described earlier.  

PXRD, Raman Microscopy, ATR-FTIR and DSC Analyses: Figure 5 (a) – (d) shows the 

patterns obtained from PXRD (a), Raman (b), ATR-FTIR (c), and DSC (d) solid state 

characterizations of the starting materials and co-crystal reference material, respectively. For 

each material analysed, the patterns show distinctive features that were exploited to identify 

subsequent samples collected from different experimental runs during the study. 

 

Figure 5. Solid state characterization results for p-TSA, TPPO and 1:1 co-crystal reference, 

3:2 reference, 1:1 co-crystal simulated and 3:2 co-crystal simulated, showing: (a) PXRD 

patterns; (b) Raman spectra; (c) ATR-FTIR spectra; and (d) DSC patterns. 

Clear differences are observed between the co-crystal forms and their respective starting 

materials and physical mixture. For example, The PXRD patterns show distinctive broad (1:1 

p-TSA-TPPO) and sharp (3:2 p-TSA-TPPO) peaks in the 2-Theta (
o
) positions 7 – 10 and 17 

(a) (b) 

(c) (d) 
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– 22. The Raman spectra show differences in peak width and position in the regions 3180 – 

2855, 1150 – 890, and 780 – 480 cm
-1

. In terms of the ATR-FTIR signal, 1:1 and 3:2 p-TSA-

TPPO both show distinctive broad peaks in the region 3400 – 3100 cm
-1

. Distinctive 

differences between the two forms are also observed in the fingerprint region from 1500 to 

400 cm
-1

. The DSC patterns also show the clear difference between the melt of the two 

co-crystals, their parent compounds and physical mixture. The melts for the different 

crystalline phases are observed at approximately 140 
o
C (1:1 p-TSA-TPPO), 144 

o
C (3:2 

p-TSA-TPPO), 139 
o
C (p-TSA) and 159 

o
C (TPPO). Interestingly, the physical mixture of 

p-TSA and TPPO shows a very broad endotherm from approximately 121 – 140 
o
C. It is 

unclear why there is such a significant shift in the endotherm for the physical mixture of the 

two compounds. DSC scans from replicate runs showed a similar profile, which suggests that 

heating the two substances together leads either to the lowering of both of their melting 

points or the formation of different crystalline phase, which has a lower melting point. 

However, these hypotheses require further investigations, which are beyond the scope of the 

current study. 

HPLC Analyses: Samples from each of the experimental runs performed during this study 

were characterized using the solid state techniques described above, and the resulting patterns 

compared to the raw material and reference patterns, as shown in Figure 5. The purity and 

stoichiometric composition of the 1:1 and 3:2 p-TSA-TPPO co-crystal forms was confirmed 

by HPLC, applying a univariate calibration model developed by preparing different mass 

fractions of the starting materials (p-TSA and TPPO) in MeCN and finding the ratio between 

the areas of the resolved peaks of both components. Figure 6 shows the calibration curve used 

to determine the relative amount of p TSA and TPPO in samples obtained from each 

experimental run. The regions corresponding to 1:1 and 3:2 p-TSA-TPPO (i.e. based on % 

Mass TPPO) are indicated by dashed lines. 
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Figure 6. Univariate HPLC calibration model used to determining the purity and 

stoichiometry of 1:1 and 3:2 p-TSA-TPPO co-crystal forms.  

HSM Analyses: Hot stage microscopy studies we carried out on co-crystal samples 

obtained from selected experimental runs. Figure 7 (a) and (b) show the images captured 

from 100 
o
C until 148 

o
C (left) and DSC scans (right) for the melting of 3:2 and 1:1 p-TSA-

TPPO. For the hot stage microscopy study, melting was observed in the temperature ranges 

141 – 148 
o
C, and 139 – 143 

o
C for 3:2 p-TSA-TPPO, and 1:1 p-TSA-TPPO, respectively, 

showing good agreement with DSC which gave melting points of 143.7 
o
C and 139.9 

o
C for 

the respective co-crystal forms. The additional endothermic event at 128.2 
o
C observed in the 

3:2 co-crystal profile is most likely residual starting material since this peak seems to 

correspond to the melt of physical mixture of p-TSA and TPPO as shown in Figure 5 (d). All 

analytical tools (off-line and on-line) used in the study indicated pure 3:2 p-TSA-TPPO 

including HPLC. 

1:1 
3:2 
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Figure 7. Hot stage microscopy images (left), (a) 1:1 p-TSA-TPPO and (b) 3:2 p TSA-

TPPO; and respective DSC scans (right) for each sample. 

SEM Analyses: Figure 8 (a) – (d) shows SEM micrographs (x60 magnification) of smaples 

with different co-crystal compositions. The distinct morphology of the 1:1 and 3:2 p-TSA-

TPPO is evident from the SEM micrographs. In particular, Figure 8, images (e) (x300) and (f) 

(x400) show clearly the rhombic and rod shapes of the 1:1 (e) and 3:2 (f) crystalline forms of 

p-TSA-TPPO, respectively. Figure 8 (c) and (d) obtained from two different experimental 

runs show a clear distinction in crystal size, which is attributed to a difference in the mass 

fraction composition of materials in the batch crystallizer (which is related to the 

supersaturation). This leads to different crystal sizes, which suggests that the mass fraction 

(b) 

100 oC 139 oC 

141 oC 143 oC 

139.9 
o
C 

(a) 

100 
o
C 141 

o
C 

146 
o
C 148 

o
C 

143.7 
o

C 

128.2 
o

C 
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composition of materials in the crystalliser can be adjusted to control the mean size and CSD 

of the final product. 

 

Figure 8. SEM micrographs of (a) 1:1 p-TSA-TPPO (x60); (b) mixture of 1:1 and 3:2 

p-TSA-TPPO (x60); (c) and (d) 3:2 p-TSA-TPPO (x60); and (e) 1:1 p-TSA-TPPO (x300) and 

(f) 3:2 p TSA TPPO (x400) crystals.  

Using the equilibrium solubility [13] at the crystalliser operating temperature (20 
o
C), the 

supersaturation with respect to 1:1 p-TSA-TPPO for these two experiments works out to 2.94 

(c) and 1.77 (d), respectively. It appears that the growth of the crystals is extremely fast and is 

favoured at low supersaturation (d) compared to higher supersaturation (c), which is 

expected. However, the supersaturation of the former is still quite high, which suggest that 

the 3:2 co-crystal phase is extremely fast growing as crystals greater than 1 mm size were 

observed. 

3.2 In situ Process Monitoring and Characterization 

Real-time in process characterizations were carried out applying in situ Raman and 

ATR-FTIR spectroscopy to clear solutions and suspensions of 1:1 and 3:2 p-TSA-TPPO, 

respectively. Figure 9 shows the regions selected from Raman spectroscopy for identification 

(c) 

(d) 

(b) (a) 

(e) (f) 

x60                       1mm 

x60                        1mm x300                     300µm x400                     200µm 
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of the different phases. Results from each of the co crystallization runs were routinely 

correlated with HPLC measurements on samples taken at different intervals in order to 

confirm the identity of the solid forms present. Where necessary, other off-line measurement 

techniques as described earlier in sections 2.2 and 3.1 were also employed to validate the 

results from the in situ process measurements and HPLC, for example, in cases where a 

mixture of different crystalline forms were suspected. This study highlights the 

complementarity of off-line and in situ process measurements. Furthermore the application of 

both methods provides a robust analysis of the co-crystallization process as well as valuable 

information for process scale-up. 

 

Figure 9. Regions of in situ Raman spectra used to differentiate between solution and solid 

phases of the p-TSA/TPPO/MeCN system.  

In Figure 9 the Raman spectral bands in the regions 200 – 350, 600 – 700, 1050 – 1250 and 

1550 – 1610 cm
-1

 correspond, respectively, to modes of aromatic ring wagging (233 – 

262 cm
-1

), C-N bending (289 – 304 cm
-1

), ring C-H and ring out-of-plane bending (710 – 
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770 cm
-1

), N -H bending and ring C-H bending (784 – 825 cm
-1

), C-C ring stretching and C-S 

stretching  (1083 – 1110 cm
-1

), P=O symmetric and asymmetric stretching (1130 – 1200 cm
-

1
) and aromatic ring vibrations (1560 – 1620 cm

-1
) [31].  

It has been shown so far that off-line solid-state and in situ characterization techniques can 

be applied effectively to distinguish between the different crystalline forms of p-TSA and 

TPPO, including their stoichiometric co-crystal forms. This information can be applied not 

only to distinguish between crystalline forms, but also to inform the development of effective 

crystallization control strategies in batch, semi-match and periodic flow crystallizers. 

3.3 Batch Co-Crystallization Monitoring and Control  

The batch cooling co-crystallization of p-TSA and TPPO to give stoichiometric 1:1 and 

3:2 p-TSA-TPPO co-crystal forms was monitored by applying an integrated PAT array 

(Figure 3) to extract information pertaining to the stability of each co-crystal form under 

different operating conditions. A further aim was to optimize the batch process for the 

selective crystallization of each co-crystal form, achieved by tuning either the starting 

composition of p-TSA/TPPO/MeCN or the crystallization temperature profile. Figure 10 (a) 

and (b) shows the process time diagrams obtained from monitoring the crystallization of 

1:1 and 3:2 p-TSA-TPPO during experiment 1 and 2 (Table 1) respectively using FBRM, 

ATR-UV/vis and ATR-FTIR spectroscopy. Also shown are the microscope images of the 

crystalline products. The 1:1 form of p-TSA-TPPO show a distinct rhombic morphology, 

while the 3:2 form exhibits a rod-like morphology. The infrared spectra of both co-crystal 

forms show distinct differences in the regions associated with C-H stretching (2900 – 3000 

cm
-1

) and N-H stretching (3000 – 3400 cm
-1

) vibration frequencies [31] (Figure 10, bottom 

right). Off-line Raman, XRD, DSC and HPLC also confirmed the purity of each co-crystal 

form. 
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The time diagrams (Figure 10 (a) and (b)) were annotated to indicate where important 

events occurred during each crystallization run. The signals from each PAT show good 

agreement with respect to the detection of nucleation, although the ATR-UV/vis and ATR-

FTIR signals are affected by temperature. Nucleation of 1:1 p-TSA-TPPO (Figure 10 (a) – 

experiment 1) is not observed until cooling toward 5 
o
C (at approximately 6.5 

o
C). On the 

other hand, nucleation of 3:2 p-TSA-TPPO (Figure 10 (b) – experiment 2) occurs at 

approximately 21 
o
C. This was due to the difference in mass fraction composition of p-

TSA/TPPO/MeCN, that is, 0.09/0.12/0.79 (experiment 1 - 1:1 p-TSA-TPPO) and 

0.19/0.09/0.72 (experiment 2 - 3:2 p-TSA-TPPO). The corresponding supersaturation (S) 

values for the experiments 1 and 2 were 2.29 and 2.69, respectively (i.e. based on solubility 

of 1:1 p-TSA-TPPO at 20 
o
C). The cooling rate was held constant for experiment 1 and 2, 

respectively (see Table 1) and the overall temperature profile was the same. These 

experiments were found to be reproducible, in terms of the co-crystal outcome. In addition to 

detecting signal from the solution phase, the ATR-FTIR probe was also able to detect the 

solid phase signal consistently, albeit at the lower limit of the instrument (650 cm
-1

) when 

1:1 p-TSA-TPPO nucleated. This is not entirly surprising since it is well known that ATR-

FTIR can be affected by particle scattering [32], [33], and to a much greater extent than 

ATR-UV/vis, which shows much less sensitivity [34]. However, the ATR-FTIR signal 

observed for the 3:2 co -crystal experiment (Figure 10 (b) – experiment 2) cannot be properly 

interpreted, as it was found to change in almost exactly the same way as the temperature 

profile, that is, except for a sudden spike in the 650 cm
-1

 peak signal at approximately 110 

min. The spike was consistent with a sudden increase in FBRM counts/s and a simultaneous 

drop in ATR-UV/vis absorbance, with confirmation of the presence of crystals obtained via 

real-time PVM measurements. The change in behavior of the 650 cm
-1

 peak signal is 

attributed to material sticking on the probe window leading to observed change in the signal 
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behavior. Furthermore, peaks that are close to the limits of the ATR-FTIR range (for the 

study the instrument had a range 650 – 2800 cm
-1

) are often not consistent due to small signal 

to noise ratio, and therefore their reliability for interpretation of process behavior is strongly 

cautioned.  

  

Figure 10. Schematic showing the process time diagrams with temperature, ATR-UV/vis, 

ATR-FTIR and FBRM signals for the crystallization of 1:1 (a) and 3:2 (b) p-TSA-TPPO 

along with microscope images (top right) and off-line ATR-FTIR spectra (bottom right) of 

samples collected at the end of both processes. 

The mass fraction of MeCN was fixed to 0.50 for experiments 3 and 4 (Table 1) and the 

amount of p-TSA and TPPO varied according to the recipe by Croker et al. [13] for obatining 

pure 3:2 and 1:1 p-TSA-TPPO respectively by cooling crystallizations at 50 mL scale. For 

the respective experimental runs (3 and 4), pure 3:2 and 1:1 p-TSA-TPPO were obtained, as 
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confirmed by off-line analysis (HPLC, Raman microscopy, off-line ATR-FTIR, SEM and 

DSC). However, due to the high solubility of p-TSA and TPPO in MeCN, it seems 

impractical to consider scale-up of the co-crystallization process applying the conditions used 

for experimental runs 3 and 4, since the high viscosity of the slurry at these high 

concentrations leads to poor mixing and suspension of the crystals. Furthermore, speciality 

agro chemicals are often highly toxic and expensive, plus the bulk storage of materials could 

pose health and environmental risks [1]. Therefore, the co-crystallization was investigated at 

much lower concentrations of p-TSA and TPPO in MeCN (see Table 1), exploiting the upper 

most regions (toward MeCN) of the terniary phase diagram. Table 3 provides a summary of 

the outcomes in terms of co-cystal form obatined, based on-line (in situ Raman) and off-line 

(Raman microscopy, off-line ATR-FTIR, SEM and DSC) analyses. 

Table 3. Summary of co-crystallization outcomes for the experiments 1 – 10, co-crystal 

form determined by on-line and off-line measurements. 

Exp 

No. 

p-TSA 

(g/g 

MeCN) 

TPPO 

(g/g 

MeCN) 

Component Mass 

 Fractions (M) HPLC Ratio 

p-TSA/TPPO 

p-TSA-TPPO 

Co-Crystal 

Form 

Region of 

Phase 

Diagram at 

20 
o
C 

p-TSA TPPO MeCN 

1 0.1147 0.1532 0.09 0.12 0.79 1.034 1:1 2 (1:1 form) 

2 0.2634 0.1247 0.19 0.09 0.72 1.486 3:2 1 (3:2 form) 

3 0.5776 0.4202 0.29 0.21 0.50 1.470 3:2 1 (3:2 form) 

4 0.3793 0.6193 0.19 0.31 0.50 1.002 1:1 2 (1:1 form) 

5 0.0706 0.1059 0.06 0.09 0.85 1.000 1:1 2 (1:1 form) 

(6) 0.1728 0.0617 0.14 0.05 0.81 1.477 => 1.002 3:2 => 1:1 1 (3:2 form) 

(7) 0.1049 0.0968 0.09 0.08 0.83 1.463 => 0.998 3:2 => 1:1 3 (Mixture) 

8 0.1084 0.0964 0.09 0.08 0.83 1.006 1:1 3 (Mixture) 

9 0.0833 0.1071 0.07 0.09 0.84 1.002 1:1 2 (1:1 form) 

( ) Temperature cycles implemented to convert from 3:2 to 1:1 p-TSA-TPPO. => Direction of transformation on 

implementation of temperature cycles. 

The expected results in terms of co-crystal form were obtained for each composition of 

p-TSA/TPPO/MeCN investigated, with the exception of experiments (7) and 8. For these 

identical experimental runs, 3:2 and 1:1 p-TSA-TPPO respectively were initially obtained. 
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The lilkely reason for this is the operation of the process in a region where both 1:1 and 

3:2 p-TSA-TPPO were most likely to nucleate (i.e., region 3 of Figure 2 as a guide) and 

co-exist as a mixture. These two identical experiments (note that temperature cycling was 

applied to (7) later) were expected to yield a mixture of 1:1 and 3:2 p TSA-TPPO. Instead, 

3:2 p-TSA-TPPO and 1:1 p TSA-TPPO were obtained from experiment (7) and 8, 

respectively. The initial outcomes perhaps highlights variability issues that can arise in a 

batch process.. It must be noted that the experimental conditions employed for runs (7) and 8 

reflect the dynamics of the crystallization kinetics of the co-crystal system. The ternary phase 

diagram on the other hand reflects the thermodynamic stability at a fixed temperature of 20 

o
C. If the crystallizer was held for a long period (e.g. 24 hrs.) at 20 

o
C, then perhaps a mixture 

of the two co-crystals would have prevailed in experiments (7) and 8. Temperature cycling 

was later applied to the initial product from experiment (7) and this led to a transformation 

from 3:2 to 1:1 p-TSA-TPPO. As demonstrated here, temperature cycling can be applied as 

an effect control strategies to direct the co-crystallisation toward a desided outcome and 

within a short time period. Temperature cycling approach using active polymorphic feedback 

control based on in situ Raman spectroscopy is a promising method recently explored by 

Simone et al. [35] to eleminate the undesired polymorph (form II) of orthoaminobenzoic acid 

(OABA) and then grow the desired form I. In this study, a simple simple temperature cycling 

approach was employed to eleminate the undesired 3:2 stoichiometric form of p-TSA-TPPO 

and grow the desired 1:1 form from experiments (6) and (7). The 1:1 co-crystal form is 

desired since the 3:2 form exhibits incongruent dissolution behaviour in MeCN [13], [30]. 

These experiments also shed light on the stability and by extension the thermodynamics of 

the crystallisation of 1:1 and 3:2 p-TSA-TPPO, respectively. The temperature cycles in 

experiments (6) and (7) were implemented based on the in situ Raman signal of peaks 

associated with the 3:2 and 1:1 p-TSA-TPPO co-crystal forms, respectively.   
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Figure 11 shows the process time diagram for the crystallization of 3:2 p-TSA TPPO 

during experiment (7). The mixture was heated up and subjected to a complex temperature 

profile with ramped heating and cooling cycles (Figure 11). The same temperature profile 

was used for experiments (6). The final product obtained from the experiment (6) and (7) was 

pure 1:1 p-TSA-TPPO, as confirmed by on-line Raman spectroscopy and the off-line solid 

state characterization methods described earlier.  

 
1 = Sample 1 at 57 min. 5 = Sample 3 at 272 min. 9 = Nucleation event. 

2 = Sample 2 at 109 min. 6 = Signal loss/fluorescence 10 = Sample 5 at 1137 min.** 

3 = Nucleation event 7 = Nucleation event **growth/agglomeration / 

   settling observed. 4 = Dissolution event 8 = Sample 4 at 177 min. 

Figure 11. Process time diagram for experiment (7) showing the changes in FBRM count/s 

and in situ Raman 2nd derivative signals (top), temperature profile implemented (bottom left) 

and microscope images of samples (bottom right). 

Figure 11 also shows the point where the first sample was taken from the process (arrow 1; 

image S1). The sample taken was confirmed to be pure 3:2 p-TSA-TPPO by both on-line and 



26 
 

off-line measurements. Following on from that point is the dissloution of 3:2 p-TSA-TPPO 

(arrow 2, image S2) ), which is marked by a decrease in the FBRM counts/s and the 2
nd

 

derivative of Raman peak signal at 304 cm
-1

. Subsequent to this event, nucleation of 

1:1 p-TSA-TPPO occurs (arrow 3), marked by an sudden increase in FBRM counts/s and the 

2
nd

 derivative of Raman peak signal 1145 cm
-1

. This is followed by slight dissolution as the 

temperature heating cycle continues (arrow 4). At approximately 270 min there is a rapid 

increase in the FBRM counts/s and simultaneous increase in the 2
nd

 derivative 1145 cm
-1

 

peak signal (arrow 5; image S3) due to implementation of a temperature cooling cycle. This 

is attributed to secondary nucleation of 1:1 p-TSA-TPPO as the amount of 3:2 p-TSA-TPPO 

diminishes.  

The relative solubility of each co-crystal phases plays an important role in the conversion 

between forms. The 3:2 co-crystal is known to undergo incongruent dissolution, whereby 

there is a transformation step involving the formation and subsequent dissolution of 1:1 

p-TSA-TPO [36]. The temperature cooling step implemented from approximately 334 to 

490 min (cooling rate of -0.2 
o
C/min) led to further secondary nucleation of 1-1 pTSA-TPPO 

(arrow 7). The microscpe image of sample 3, Figure 11 (image S3), shows there is a mixture 

of 3:2 and 1:1 p-TSA-TPPO. The presence of a mixture was also confirmed by off-line solid 

state characterizations and HPLC analysis. Following this, a temperature heating step was 

implemented (heating rate of 0.2 
o
C/min) to dissolve 3:2 p-TSA-TPPO (arrow 8; image S3). 

This was then followed by another cooling step to nucleate and grow 1:1 p-TSA-TPPO 

(arrow 10; image S4). The final sample collected at the end of the batch (image S5) was 

found to be pure 1:1 p-TSA-TPPO.  

The work presented here is a proof of concept study whereby the mass faction composition 

and temperature cycling are applied to control the co-crystallization process in order to 
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obtained the desired stoichiometric form of the p-TSA-TPPO co-crystal system. It has been 

demonstrated that the co-crystal form can be controlled by manipulating the composition of 

p-TSA, TPPO and MeCN, as previously demonstrated by Croker et al. [13], [30] in small 

scale studies. The stoichiometric purity of the final co-crystal was assured by implementation 

of a complex array of on-line and off-line monitoring and characterization techniques. Also 

demonstrated is the application of a complex temperature profile having several heating and 

cooling cycles to influence the outcome of the co-crystallisation when the undesired form is 

initially obtained. The process was also characterized using a combination of on-line and 

off-line PAT tools. Attempts to convert from 1:1 to 3:2 p-TSA-TPPO were unsuccessful, 

however, studies are ongoing to investigate if this is possible using the same scale of 

equipment used in this study. 

3.4 Semi-Batch Co-Crystallization Monitoring and Control 

The semi-batch co-crystallization of p-TSA with TPPO was explored under flow conditions 

whereby a fixed concentration of the two starting materials dissolved in MeCN are pumped 

separately, then combined and mixed in a batch crystallizer (see Figure 4). In this study the 

flow rates of the two components were adjusted to crystallize the desired stoichiometric form 

of the p-TSA-TPPO co-crystal system. This operating strategy offers a  promising alternative 

to batch, and could potential lend itself to further development into a continuous 

co-crystallization operation. Table 4 provides a summary of the co-crystallization outcomes 

for each of the semi-batch experimental runs. 

Figure 12 (a) and (b) shows the process time diagrams with temperature profile and on-line 

PAT signals from FBRM (solid phase), ATR-UV/vis (solution phase), ATR-FTIR (solution 

phase) and Raman (co-crystal form and solution phase monitoring) for experiment 10. The 

co-crystal form obtained from this experiment was pure 3:2 p-TSA-TPPO as confirmed by 
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both on-line (Raman MR immersion probe) and off-line (HPLC, PXRD, Raman microscope 

and ATR-FTIR) measurements. Experiments 11 – 17 (Table 4) were carried out under similar 

process conditions to experiment 10, meaning the process temperature (varying from 25 
o
C 

=> 20 
o
C) and concentrations of p-TSA (0.2987 g/g MeCN) and TPPO (0.1492 g/g MeCN) in 

the feed vessels were exactly the same. The main difference between these runs is the mass 

flow rate of p-TSA and TPPO from the feed vessels (Figure 4) to the crystallizer. The results 

show that by changing the mass flow rate of either p-TSA or TPPO, one can change the mass 

fraction composition of materials in the crystallizer and thereby control the co-crystallization 

outcome. When the flow rate is adjusted so that the mass fractions of p-TSA and TPPO are 

similar, the resulting mixture falls into region 3 of the ternary phase diagram and hence two 

co-crystal forms were obtained, for example, as observed from experiments 12 and 16 

(Table 4). 

Table 4. Summary of co-crystallization outcomes for the experiments 10 – 17, co-crystal 

form determined by on-line and off-line measurements. 

Exp 

No. 

Solution Flow 

Rates  

(g/min) 

Mass Fractions (M) 

in Crystallizer HPLC Ratio 

p-TSA/TPPO 

p-TSA-TPPO 

Co-Crystal 

Form 

Region of 

Phase 

Diagram at 

20 
o
C 

p-TSA 

soln. 

TPPO 

soln. 
p-TSA TPPO MeCN 

10 28.0 24.7 0.12 0.09 0.79 1.479 3:2 1 (3:2 form) 

11 32.7 20.0 0.14 0.05 0.81 1.522 3:2 1 (3:2 form) 

12 20.0 32.7 0.09 0.08 0.83 1.313 1:1 + 3:2 3 (mixture) 

13 15.0 37.7 0.06 0.09 0.85 1.002 1:1 2 (1:1 form) 

14 20.0 32.7 0.12 0.12 0.76 1.021 1:1 2 (1:1 form) 

15 23.4 29.3 0.10 0.08 0.83 1.475 3:2 3 (mixture) 

16 17.7 35 0.08 0.08 0.84 1.333 1:1 + 3:2 3 (mixture) 

17 27.5 25.2 0.11 0.07 0.82 1.475 3:2 1 (3:2 form) 
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Indeed, the semi-batch co-crystallization experiments were more consistent in terms of 

co-crystallization outcomes when compared to the batch runs described earlier (Section 3.2). 

Moreover, slight changes in the mass flow rate of one or both co-formers can alter the 

co-crystallization outcome favoring either 1:1 or 3:2 p-TSA-TPPO or a mixture. However, 

these changes can be avoided if the flow rates are controlled appropriately. 

 

Figure 12. Process time diagrams of experiment 10 showing the temperature profile, (a) 

FBRM total particle counts/s (solid phase monitoring) and the change in absorbance and peak 

intensity readings from ATR-UV/vis and ATR-FTIR probes used to monitor the liquid phase; 

and (b) changes in the 2
nd

 derivative of Raman peaks at 1145 and 304 cm
-1

, associated with 
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1:1 and 3:2 p-TSA-TPPO, respectively, and the liquid phase. Arrows show respectively, 

nucleation (FBRM counts/s) (1), decreasing solute in solution phase (2), crystal growth (3), 

increasing 3:2 p-TSA-TPPO peak (4), 1:1 p-TSA-TPPO peak (5), and change in solution 

phase (6). 
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3.5 Principal Component Analysis on in situ Raman Spectra 

Principal component analysis (PCA) is often used in chemometrics to extract the dominant 

patterns from chemical data. The result is a complementary set of scores and loadings that 

can be used to visualize trends in the data [37]. PCA analysis was performed on the Raman 

spectra obtained when pure 1:1 and 3:2 p-TSA-TPPO and mixture of the two co-crystals 

forms nucleated; a total of 390 spectra obtained from the batch and semi-batch experiments 

described earlier. Figure 13 shows the scores plot of principal components 1 and 2 obtained 

from the analysis. It shows there are three clusters of data corresponding to each of the three 

experimental runs. Analysis of the PCA scores plot allows for the identification of the co-

crystal form obtained from each of the experimental runs. PC1 and PC2 combined represent 

93.2 % of the spectral variance. The three distinct clusters indicate that a different co-crystal 

form or a mixture of forms was obtained from each experimental run. Clusters 1, 2 and 3 

represent experiments 10, 12 and 13 respectively, and the co-crystal forms were 3:2, mixture 

of 1:1 and 3:2, and 1:1 p-TSA-TPPO respectively. Arrows show the direction of increasing 

amount of solids as the crystallization progresses. PCA is an additional tool that was used to 

monitor and characterize the co-crystallization process, providing valuable information 

pertaining to the crystalline form that nucleates and grows.  

 

Figure 13. PCA scores plot of Raman spectra from experimental runs 10 (cluster 1), 12 

(cluster 2) and 13 (cluster 3). Arrows show the direction of increasing amounts of solids as 

the crystallizations progress.  
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4. CONCLUSIONS 

In this study, the cooling co-crystallization of p-TSA with TPPO to form either the 1:1 or 3:2 

p-TSA-TPPO stoichiometric co-crystal from MeCN was demonstrated in laboratory scale 

500 mL batch and semi-batch crystallizers. Monitoring and control of the selective 

co-crystallization of 1:1 and 3:2 p-TSA-TPPO was achieved using an integrated array of PAT 

tools complemented by off-line solid state characterization techniques. These technologies 

allowed gave a better understanding of the co-crystallization process. Three different regions 

of the p-TSA/TPPO/MeCN ternary phase diagram corresponding to the formation of the pure 

co-crystals as well as mixtures of both forms were explored by changing the mass fraction 

compositions of p-TSA/TPPO/MeCN in the crystallizers.  

In the batch study, as expected the pure 1:1 and 3:2 co-crystal forms were successfully 

isolated when the process was operated well within the respective stable regions extrapolated 

from the ternary diagram at 20 
o
C. However, batch-to-batch variability issues were 

occasionally encountered when the process was operated in the mixture region. It was 

demonstrated that if temperature cycling is implemented with the aid of in situ Raman 

spectroscopy measurements and off-line solid-state characterization methods, then the 

crystallization can be controlled and directed towards the desired outcome, that is, to obtain 

the more stable 1:1 p-TSA-TPPO co-crystal. The transformation from 3:2 to 1:1 p-TSA-

TPPO via temperature cycling was presented as a proof of concept approach to the control of 

crystalline form during co-crystallization, which prior to now was only been demonstrated for 

single component molecular systems. The study shows, for the first time the use of PAT to 

monitor the transformation events in a co-crystal system. The information was then used to 

aid the control of the co-crystallization process in order to obtain the desired crystalline form.  
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The semi-batch co-crystallization study was carried out using a fixed concentration of the 

two co-formers (p-TSA and TPPO) in MeCN, each prepared in a separate vessel. In this 

proof of concept study, the co-crystallization was controlled by changing the flow rate of the 

dissolved materials to the crystallizer. It was demonstrated that by changing the flow rates, 

the mass fraction of components sent to the crystallizer could be controlled, thereby 

controlling the outcome of the co-crystallization. This operation is promising, and could 

potentially be developed into a continuous co-crystallization process. 
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1. Selective co-crystallization of 1:1 and 3:2 stoichiometric forms of p-TSA-TPPO aided by an integrated array of 
process analytical technologies (PAT) and complemented by off-line solid-state analyses.  
 
 
2. Temperature cycling for based on in situ Raman spectroscopy signal for process control and use of PAT to 
gain understanding of solution mediated transformation events in the co-crystal system.  
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3. Control of a co-crystallisation process via differential flow rate of dissolved starting materials to the 
crystallizer. It was demonstrated that by changing the flow rates, the mass fraction of components to the 
crystallizer could be controlled, thereby controlling the co-crystal form obtained.  

 




