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Measurements of the coherence factors (R Kππ0 and R K 3π ) and the average strong-phase differences

(δKππ0

D and δK 3π
D ) for the decays D0 → K −π+π0 and D0 → K −π+π+π− are presented. These

parameters are important inputs to the determination of the unitarity triangle angle γ in B∓ → D K ∓
decays, where D designates a D0 or D̄0 meson decaying to a common final state. The measurements
are made using quantum correlated D D̄ decays collected by the CLEO-c experiment at the ψ(3770)

resonance, and augment a previously published analysis by the inclusion of new events in which the
signal decay is tagged by the mode D → K 0

S π+π−. The measurements also benefit from improved
knowledge of external inputs, namely the D0 ̄D0 mixing parameters, rKπ

D and several D-meson branching

fractions. The measured values are R Kππ0 = 0.82 ± 0.07, δKππ0

D = (164+20
−14)

◦, R K 3π = 0.32+0.20
−0.28 and

δK 3π
D = (225+21

−78)
◦. Consideration is given to how these measurements can be improved further by using

the larger quantum-correlated data set collected by BESIII.
© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
1. Introduction

Knowledge of the coherence factor and average strong-phase
difference for the inclusive decays D0 → K −π+π0 and D0 →
K −π+π+π− is necessary for the measurement of the unitarity
triangle angle γ (also denoted φ3) when making use of b-hadron
decays involving these D-meson final states. Furthermore, any at-
tempt to exploit these D decay modes in an inclusive way to study
D0 ̄D0 mixing and CP violation also requires knowledge of these
parameters.

The coherence factor R Kππ0 and average strong-phase differ-
ence δKππ0 for the decay D0 → K −π+π0 are defined as fol-
lows [1]:
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R Kππ0 e−iδKππ0 
D =

∫
AK −π+π0 (x)AK +π−π0 (x)dx

AK −π+π0 AK +π−π0
, (1)

where AK ±π∓π0 (x) is the decay amplitude of D0 → K −π+π0 at a
point in multi-body phase space described by parameters x, and

A2
K ±π∓π0 =

∫ ∣∣AK ±π∓π0 (x)
∣∣2

dx. (2)

The expression for D0 → K −π+π+π− has the same form and in-
volves the parameters R K 3π and δK 3π

D . The coherence factor takes
a value between 0 and 1. It is also useful to define the parame-
ter rKππ0

D = AK +π−π0 /AK −π+π0 (and analogously rK 3π
D ), which is

the ratio between the amplitudes integrated over phase space of
the doubly-Cabibbo suppressed (DCS) and Cabibbo-favoured (CF)
decays.

The role of the coherence factor and average strong-phase dif-
ference can be appreciated by considering the decay rates of
 Funded by SCOAP3.
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B∓ mesons to a neutral D meson, reconstructed in the inclusive
K ±π∓π0 final state, and a kaon:

Γ
(

B∓ → (
K ±π∓π0)

D K ∓)
∝ (rB)2 + (

rKππ0

D

)2

+ 2rBrKππ0

D R Kππ0 cos
(
δB + δKππ0

D ∓ γ
)
. (3)

Here rB ∼ 0.1 is the absolute amplitude ratio of the b → uc̄s
to b → cūs transitions contributing to the B− decay. The phase
difference between these two paths is (δB − γ ), where δB is a
CP-conserving strong phase. The coherence factor, not present in
the equivalent expression for a single point in phase space or two-
body D-meson decays, controls the size of the interference term
that carries the sensitivity to γ . Similar modifications occur in the
familiar expressions for D0 D̄0 mixing [2].

As proposed in Ref. [1], the coherence factor and average
strong-phase difference may be measured in the decays of coher-
ently produced D D̄ pairs at the ψ(3770) resonance. A double-tag
technique is employed where one meson is reconstructed in the
decay of interest, here D0 → K −π+π0 or D0 → K −π+π+π− , and
the other, for example, to a CP eigenstate. The CLEO Collabora-
tion pursued this approach using ψ(3770) data corresponding to
an integrated luminosity of 818 pb−1, and determined R Kππ0 =
0.84 ± 0.07, δKππ0

D = (227+14
−17)

◦ , R K 3π = 0.33+0.20
−0.23 and δK 3π

D =
(114+26

−23)
◦ [3]. The results for D0 → K −π+π+π− have been made

use of by LHCb, who performed a first observation of the decays
B∓ → (K ±π∓π+π−)D K ∓ [4], and set constraints on the angle
γ based on this, and related, analyses [5]. The results for D0 →
K −π+π0 are also of current interest, since Belle has recently re-
ported first evidence of the decays B∓ → (K ±π∓π0)D K ∓ [6]. In
view of these studies, and the likelihood of future, more precise,
measurements by LHCb, Belle-II and the LHCb upgrade, it is de-
sirable to confirm the main features of the CLEO analysis, namely
the low value of coherence seen in D0 → K −π+π+π− and the
higher value found for D0 → K −π+π0, and, if possible, to reduce
the uncertainty on the parameters.

This Letter reports on an analysis of double-tagged ψ(3770)

decays, making use of the same data set analysed in the origi-
nal CLEO analysis, where one D-meson is reconstructed as either
K −π+π0 or K −π+π+π− , and the other meson in the final state
K 0

S π+π− . The selected events are partitioned according to their
position in K 0

S π+π− three-body phase space (Dalitz space), and
knowledge of the properties of this decay, obtained from CLEO [7]
and the B-factories [8–11], is used to obtain constraints on the
coherence factors and average strong-phase differences. Certain ex-
ternal inputs that are required in the measurement have improved
in precision since the original analysis, namely the D0 D̄0 mixing
parameters and the parameter rKπ

D [12], the branching fractions of
the CF modes D0 → K −π+π0 and D0 → K −π+π+π− [13], and
D0 → K +π−π+π− [14]. The current study benefits from these
improvements.

2. Measuring the coherence factor and average strong-phase
difference with K 0

S π+π− tags

Double-tag events at the ψ(3770), in which one D meson is
reconstructed in the signal decay of interest, here K −π+π0 or
K −π+π+π− , and the other meson is reconstructed in the mode
K 0

S π+π− , may be used to measure the coherence factor and aver-
age strong-phase difference of the signal decay. The strategy relies
on measuring the double-tag yields in bins of the K 0

S π+π− Dalitz
plot and requires several external inputs. CP violation in the charm
system is known to be very small [12], and is hence neglected
throughout.
The K 0
S π+π− Dalitz plot with axes m+ ≡ m(K 0

Sπ
+)2 and m− ≡

m(K 0
Sπ

−)2 is partitioned into 2 × N bins, symmetrically about the
line m2+ = m2− . The bins are indexed with i, running from −N to
N excluding zero, with the positive bins lying in the m2+ > m2− re-
gion. For each point in Dalitz space the phase difference, �δD , is
defined as �δD ≡ δD(m2+,m2−) − δD(m2−,m2+), where δD(m2+,m2−)

is the phase of the D0 decay at that point. The parameters ci and
si are the amplitude-weighted averages of cos(�δD) and sin(�δD),
respectively, in each bin. The parameter Ki is the fractional yield of
D0 decays that fall into bin i. All these quantities are defined ignor-
ing D0 D̄0 mixing effects, which is appropriate for ψ(3770) mesons
produced at rest in the laboratory, as is the case at CLEO [15].

At the ψ(3770) resonance D D̄ mesons are produced in a C-odd
eigenstate and their decays are quantum-correlated. As a conse-
quence, the yield of double-tagged events where one meson decays
into K −π+π0, and the other meson decays into K 0

Sπ
+π− , lying in

bin i, is given by

Yi = H Kππ0

(
Ki + (

rKππ0

D

)2
K−i

− 2rKππ0

D

√
Ki K−i R Kππ0

[
ci cos δKππ0

D + si sin δKππ0

D

])
, (4)

where H Kππ0 is a normalisation factor.1 An analogous expression,
here and subsequently, can be written for K −π+π−π+ decays.

A binning scheme is chosen with N = 8 and a partitioning de-
fined according to the ‘equal �δD ’ arrangement of Ref. [7], so that
each bin spans an equal interval of �δD , with the variation in
�δD taken from an amplitude model developed by BaBar [10]. This
scheme ensures that (c2

i + s2
i ) ≈ 1 which maximises the sensitivity

of the yields to the interference term.
Measurements of Yi enable R Kππ0 and δKππ0

D , and the normal-
isation factor H Kππ0 , to be determined, provided that the values

of the other parameters are known. The amplitude ratio rKππ0

D
is determined principally by the ratio of suppressed to favoured
time-integrated branching ratios [13,14,16], with higher-order cor-
rections arising from mixing effects:

B(D0 → K +π−π0)

B(D0 → K −π+π0)

= (
rKππ0

D

)2[
1 − (

y/rKππ0

D

)
R Kππ0 cos δKππ0

D

+ (
x/rKππ0

D

)
R Kππ0 sin δKππ0

D

+ (
x2 + y2)/2

(
rKππ0

D

)2]
, (5)

where x and y are the D0 D̄0 mixing parameters [12].
The CLEO Collaboration has measured ci and si in quantum-

correlated D D̄ decays [7]. In the same study values are reported
for Ki , but these results are insufficiently precise to be useful in
the current analysis; the magnitude of rKππ0

D means that the in-
terference term is an order of magnitude smaller than the leading
order term Ki , and hence the relative uncertainty on Ki needs to
be < 10% for the analysis to have sensitivity to the parameters of
interest.2 This precision is obtainable from the very large flavour-
tagged D0 → K 0

S π+π− samples collected at the B-factories.
Although the Ki factors are in principle directly measurable

with the B-factory samples, no results are currently available.

1 Eq. (4) can be derived from Eq. (7) in Ref. [1], where the partial width corre-
sponds to the integration over a single bin of the Dalitz space.

2 This requirement is to be contrasted with that in the measurement of the coher-

ence factor and average strong-phase difference of D0 → K 0
S K ±π± decays reported

in Ref. [17], where the interference term is significantly larger in relative magni-
tude, and hence the precision of the Ki results reported in Ref. [7] is adequate. This
feature also allows the less-well understood K 0

L π+π− decays to be employed as a
useful tag.
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Table 1
Fractional flavour-tagged yields, K ′

i , in each equal �δD bin as determined from
B-factory amplitude models.

Bin K ′
i Bin K ′

i

1 0.1701 ± 0.0014 −1 0.0786 ± 0.0013
2 0.0875 ± 0.0012 −2 0.0187 ± 0.0002
3 0.0726 ± 0.0021 −3 0.0198 ± 0.0003
4 0.0257 ± 0.0011 −4 0.0159 ± 0.0016
5 0.0883 ± 0.0027 −5 0.0519 ± 0.0013
6 0.0587 ± 0.0011 −6 0.0147 ± 0.0003
7 0.1249 ± 0.0019 −7 0.0135 ± 0.0004
8 0.1320 ± 0.0023 −8 0.0273 ± 0.0010

However the predictions of amplitude models fitted to these sam-
ples exist in the form of high-granularity look-up tables from both
BaBar [18] and Belle [19]. The Belle model is described in Ref. [8].
The principal BaBar model is that of Ref. [9]. Two older BaBar
models [10,11] are used for systematic checks. The main differ-
ences between the model presented in Ref. [9] and the others is
the description of the ππ and Kπ S-wave amplitudes. The model
includes the non-unitarity violating K -matrix description of the
ππ S-wave [20] and the LASS parameterisation [21] for the Kπ
S-wave, which give a better phenomenological description of these
amplitude contributions. The squared amplitude coming from each
model is used to calculate the fraction in each bin of the total in-
tegrated over the Dalitz plot. The results adopted for the current
analysis are presented in Table 1. For each bin the central value is
taken as the mean of the results from the Belle and the principal
BaBar model, with the assigned uncertainty being the difference
between the two results, apart from in a few bins where this dif-
ference is less than the root mean square (RMS) of the results of
the three BaBar models, in which case this RMS is adopted as the
error. The relative uncertainties, which account for possible biases
associated with the different efficiency corrections at the two ex-
periments, and different paradigms used to model the resonances,
are typically ∼ 1%.

The B-factory models are fitted to samples of time-integrated
D-meson decays and therefore include the effects of mixing. For
this reason the parameter for the fractional yields derived from
these models is designated K ′

i , which is related to Ki , the unmixed
fraction, by K ′

i = Ki + √
Ki K−i(yci + xsi) +O(x2, y2) [15]. This re-

lation assumes a uniform proper-time acceptance, which is a good
approximation at the B-factories. Deviations from this assumption
have negligible impact upon the analysis, since the difference be-
tween K ′

i and Ki is generally small compared with the assigned
uncertainty.

3. Data set and selection of K 0
S π+π− tags

An 818 pb−1 data set of e+e− collisions produced by the Cor-
nell Electron Storage Ring (CESR) at

√
s = 3.77 GeV and collected
with the CLEO-c detector is analysed. The CLEO-c detector is de-
scribed in detail elsewhere [22]. In addition, simulated Monte Carlo
samples are studied to assess possible background contributions
and to determine efficiencies. The EVTGEN package [23] is used to
generate the decays and GEANT [24] is used to simulate the CLEO-c
detector response.

Standard CLEO-c selection criteria are applied for π± , K ± , π0

and K 0
S candidates, as described in Ref. [25]. In addition, for K 0

S
candidates it is required that |M(π+π−) − M(K 0

S )| < 7.5 MeV/c2

and the decay vertex is separated from the interaction region with
a significance greater than two standard deviations. Final states
are fully reconstructed via two kinematic variables: the beam-

constrained candidate mass, Mbc ≡
√

s/(4c4) − p2
D/c2, where pD

is the D candidate momentum, and �E ≡ E D − √
s/2, where

E D is the sum of the D daughter candidate energies. Require-
ments are imposed of |�E| < 20 MeV and |�E| < 30 MeV for
the K −π+π−π+ and K 0

S π+π− decay modes, respectively, and
−58 < �E < 35 MeV for K −π+π0. The double-tagged yield is
determined from counting events in the signal region of the two-
dimensional Mbc space of both meson candidates, defined by
1.86 < Mbc < 1.87 GeV/c2, and the sidebands used to subtract the
combinatoric background. Fig. 1 shows the data distributions for
K −π+π0 and K −π+π+π− candidates tagged by K 0

S π+π−; the
low level of combinatoric background is clearly shown. Peaking
backgrounds are estimated and subtracted using a sample of sim-
ulated D D̄ Monte Carlo, approximately 3.3 times larger than the
data. The sizes of these backgrounds vary from bin-to-bin, and are
on average 1.3% for the K −π+π+π− selection and 0.5% for the
K −π+π0 selection.

For double tags containing K −π+π+π− decays, on average
1.08 pairs of candidates are found per selected event. In the case
of K −π+π0 decays the corresponding number is 1.15. In those
events with more than one candidate pair, that in which the two
Mbc values most closely match the D0 nominal mass is retained
for the final analysis.

A kinematic fit is applied to determine more reliably the po-
sition of a candidate in the Dalitz plot. The decay products of
each D candidate are constrained to have the invariant mass of
the D0 meson, and the K 0

S -candidate daughters are constrained to
the nominal K 0

S mass. Around 0.5% of events fail this fit, or lie
outside the Dalitz boundaries, and are discarded.

Simulated samples of 250,000 signal Monte Carlo events are
used to determine the relative bin-to-bin efficiencies with a preci-
sion of ∼ 1% (knowledge of the absolute efficiency is not important
in the analysis). This variation in efficiency is small, with the most
efficient bin being a relative 13% above the lowest efficiency bin.

The yield results in each bin, Yi , are given in Table 2. The dis-
played uncertainties are statistical, as the systematic biases associ-
ated with the background subtraction and efficiency correction are
negligible in comparison. Bin-to-bin migration induced by finite
Fig. 1. Data Mbc distributions for (left) D → K −π+π0 and (right) D → K −π+π+π− candidates tagged by K 0
S π+π− candidates.
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Table 2
Bin-by-bin yields, Yi , of signal decays double-tagged with K 0

S π+π− . The numbers
are background subtracted and have been corrected for relative efficiency effects
between bins, normalised to the bin of lowest efficiency.

Bin K −π+π0 K −π+π+π− Bin K −π+π0 K −π+π+π−

1 566.3 ± 25.2 370.3 ± 20.7 −1 285.5 ± 18.0 194.0 ± 15.0
2 267.9 ± 17.3 224.5 ± 15.9 −2 67.5 ± 8.9 61.0 ± 8.3
3 224.6 ± 15.6 190.3 ± 14.4 −3 70.7 ± 9.0 49.6 ± 7.5
4 90.3 ± 9.8 60.2 ± 8.1 −4 50.4 ± 7.2 39.3 ± 6.4
5 259.2 ± 17.2 185.8 ± 14.5 −5 138.0 ± 12.6 99.3 ± 10.7
6 210.2 ± 15.5 119.0 ± 11.9 −6 49.9 ± 8.0 34.7 ± 6.6
7 403.6 ± 21.3 313.3 ± 18.8 −7 44.9 ± 7.4 37.9 ± 6.7
8 426.2 ± 21.7 303.3 ± 18.3 −8 93.4 ± 10.2 78.2 ± 9.5

Table 3
Measured ρ and � observables, as reported in Ref. [3], but
with modifications as explained in the text. Here the first un-
certainty is statistical and the second systematic.

Observable Measured value

ρKππ0

CP+ 1.119±0.020±0.032

ρKππ0

CP− 0.869±0.023±0.048

ρKππ0

LS 0.388±0.127±0.026

ρKππ0

Kπ,LS 0.180±0.076±0.028

�Kππ0

CP 0.119±0.015±0.022

ρK 3π
CP+ 1.087±0.024±0.029

ρK 3π
CP− 0.934±0.027±0.046

ρK 3π
LS 1.116±0.227±0.073

ρK 3π
Kπ,LS 1.018±0.177±0.054

�K 3π
CP 0.084±0.018±0.022

ρKππ0

K 3π,LS 1.218±0.169±0.062

momentum resolution is at the level of 1 to 2% depending upon
the bin, and gives negligible bias in the coherence factor fit since
the effect is in common with that present in the analysis per-
formed to measure the ci and si parameters [7].

4. Previously measured observables for determining the
coherence factor and average strong-phase difference

It is useful to recall briefly the observables measured in the
original CLEO analysis. Double-tag yields were measured in which
the signal decay, for example K −π+π0, is accompanied either by
a decay to CP-even or CP-odd eigenstate (CP+, CP−), to another
signal decay in which the kaon has the same charge as that of
the first decay (likesign, LS), or by a K −π+ decay, again where
the kaon has the same charge as that in the sister decay (Kπ, LS).
The observables ρKππ0

CP+ , ρKππ0

CP− , ρKππ0

LS and ρKππ0

Kπ,LS were then de-
termined, which are the ratios of the measured double-tag yields
to the yields expected in the absence of quantum-correlations.
The deviation of any of these observables from unity is indica-
tive of a non-zero coherence factor. Equivalent observables were
measured for the decay K −π+π+π− . A ninth observable, ρKππ0

K 3π,LS
was defined in a similar manner for events where the double-
tag is formed from the two signal decays in the case where
the kaons are of the same charge. Finally, the derived observable
�Kππ0

CP ≡ ±1 × (ρKππ0

CP± − 1), was calculated (and similarly �K 3π
CP ),

in order that the results for the CP-even and CP-odd tags could
be combined together in a useful manner. Precise definitions, and
expressions relating the observables to the physics parameters of
interest, can be found in Ref. [3].

The measured values of the ρ and � observables are sum-
marised in Table 3. Small corrections have been applied with re-
spect to those values reported in Ref. [3] to take account of the
Table 4
Values of mixing parameters and branching fractions used in the fit.

Parameter Value Reference

x (0.39+0.17
−0.17)% [12]

y (0.67+0.07
−0.08)% [12]

δKπ
D (192.5+9.4

−11.0)◦ [12]

B(D0 → K −π+π0) (14.96 ± 0.34)% [13]
B(D0 → K +π−π0) (3.28 ± 0.20) × 10−4 [13,16]
B(D0 → K −π+π+π−) (8.29 ± 0.20)% [13]
B(D0 → K +π−π−π+) (2.68 ± 0.11) × 10−4 [13,14]
B(D0 → K −π+) (3.88 ± 0.05)% [16]
(rKπ

D )2 (0.349 ± 0.004)% [12]

improved knowledge of the D0 D̄0 mixing parameters [12], the CF
D0 → K −π+π0 and D0 → K −π+π+π− branching ratios [13], and
the DCS D0 → K +π−π+π− branching ratios [14], all of which
enter the analysis. It can be seen that the deviations from the
zero-coherence hypothesis are generally more significant for the
K −π+π0 observables than for those of K −π+π+π− .

5. Fit results

All measurements of the observables, along with the corre-
sponding covariance matrix, are combined in a χ2 fit to determine
R Kππ0 , δKππ0

D , R K 3π and δK 3π
D . In addition, the other parameters

on which the observables depend – x, y, δKπ
D , rKπ

D , ci , si , Ki and
the D0 branching fractions – are free parameters in the fit. How-
ever, these external parameters are Gaussian constrained to their
measured central values. The values and uncertainties used for x,
y, δKπ

D , rKπ
D and the branching fractions are given in Table 4; apart

from B(D0 → K −π+) all external parameters have been updated
since the original CLEO analysis. In particular, the CLEO Collabo-
ration has reported new values of the CF branching fractions for
D0 → K −π+π0 and D0 → K −π+π+π− decays [13]; these val-
ues are used to normalise the measurements of the DCS branching
fractions reported in Refs. [14,16]. Therefore, the DCS branching
fractions used in the fit have been scaled appropriately to reflect
this change in the value of the normalising branching fraction. The
values of ci and si , along with their uncertainties and correlations,
are taken from Ref. [7]. The values of Ki are those given in Ta-
ble 1.

The additional information the Yi observables bring to the
analysis can be seen in Fig. 2 where scans of the �χ2 for the
new observables alone are shown over the (R Kππ0 , δKππ0

D ) and
(R K 3π , δK 3π

D ) parameter spaces. The scans indicate that significant
coherence in both modes is favoured by the Yi observables. Fur-
thermore, the expected values of the Yi observables for the best
fit values of the coherence parameters is compared to the data for
the K −π+π0 vs. K 0

S π+π− and K −π+π+π− vs. K 0
S π+π− data

in Fig. 3. Also, shown are the values of Yi expected if there was
no coherence to indicate the variation of these observables with
significant coherence.

The best fit values and the correlations amongst the parame-
ters for the global fit are given in Tables 5 and 6, respectively. The
reduced χ2 of the fit is 44.4/33, which corresponds to a probabil-
ity of 8.9%. The best fit value of R K 3π is compatible with zero
within two standard deviations. Therefore, a scan of the likeli-
hood within the physical region R K 3π ∈ {0,1} is performed to
determine a confidence interval for this parameter. The likeli-
hood is

L(R K 3π ) = exp

[
−χ2

0 − χ2(R K 3π )
]
,

2



J. Libby et al. / Physics Letters B 731 (2014) 197–203 201
Fig. 2. (Colour online.) Scans of the contribution from the Yi observables to the �χ2 in the (left) (R Kππ0 , δKππ0

D ) and (right) (R K 3π , δK 3π
D ) parameter space. The colours

correspond to 1σ (yellow), 2σ (green) and 3σ (red) confidence intervals.

Fig. 3. Comparison of the (left) K −π+π0 vs. K 0
S π+π− Yi and (right) K −π+π+π− vs. K 0

S π+π− data (points with error bars) with the expectation from the best fit values
of the parameters (solid line). Also shown is the expected values of Yi if there was no coherence in the decay (dashed line).
Table 5
Results from the fit. The uncertainties are the
combination of the statistical and systematic
uncertainties.

Parameter Fitted value

R Kππ0 0.82 ± 0.07

δKππ0

D (164+20
−14)◦

R K 3π 0.32+0.20
−0.28

δK 3π
D (255+21

−78)◦

Table 6
Correlation coefficients between the parameters.

δKππ0

D R K 3π δK 3π
D

R Kππ0 −0.444 0.216 −0.008

δKππ0

D – −0.477 0.097

R K 3π – – 0.201

where χ2
0 is the best fit value of the χ2 with all parameters

free and χ2(R K 3π ) is the best fit value of the χ2 with R K 3π

fixed but all other parameters free. The resulting likelihood scan
is shown in Fig. 4. The upper 95% confidence limit R95%

K 3π is defined
as

∫ R95%
K 3π

0 L(R K 3π )dR K 3π∫ 1
0 L(R K 3π )dR K 3π

= 0.95.

The resulting upper 95% confidence limit is R K 3π < 0.60.
In the original CLEO analysis [3] some improvement was ob-

served in the y and δKπ uncertainties with these parameters
D
Fig. 4. Likelihood scan of R K 3π within the physical region. The 95% confidence level
interval is indicated by the hatched region.

constrained in the fit; this motivated a fit with these parame-
ters unconstrained to determine the standalone sensitivity to the
charm-mixing parameters. However, given the improvements in
the determination of the charm-mixing parameters [12] since the
original CLEO analysis, such a reduction in uncertainty is no longer
observed. Therefore, a fit with the charm-mixing parameters un-
constrained is not presented here.

Scans of the (R Kππ0 , δKππ0

D ) and (R K 3π , δK 3π
D ) parameter space

are shown in Fig. 5. The �χ2 is used to determine the one, two
and three standard deviation confidence intervals within the pa-
rameter space. The values of R and δ are fixed, while all other
parameters are left free while minimising the χ2 at each point
from which a �χ2 with respect to χ2

0 can be obtained. These
scans indicate the non-Gaussian nature of the confidence regions
for R and δD . Therefore, when these results are to be used in an
analysis it is recommended to use the full �χ2 scan [26] or the
observables themselves.



202 J. Libby et al. / Physics Letters B 731 (2014) 197–203
Fig. 5. (Colour online.) Scans of the �χ2 in the (left) (R Kππ0 , δKππ0

D ) and (right) (R K 3π , δK 3π
D ) parameter space.
6. Outlook and conclusions

Updated measurements of the coherence factors and aver-
age strong-phase differences for D0 → K −π+π0 and D0 →
K −π+π+π− have been presented. Despite the addition of events
tagged by D0 → K 0

S π+π+ decays the overall precision on the pa-
rameters has not improved significantly compared to the original
CLEO-c analysis [3]. However, the likelihood curves are significantly
different to those previously published as a result of the changes
in the central values of the parameters, in particular those of the
average strong-phase differences. These changes are due to the ad-
ditional data and the updates to the D0 branching fractions and
charm-mixing parameters. Therefore, it is recommended that the
new results are used in the determination of γ /φ3 from B± → D K
decays and in charm-mixing studies.

The BESIII detector [27] has collected a correlated D D̄ data
set at a centre-of-mass energy corresponding to the mass of the
ψ(3770). This data set is approximately 3.5 times larger than
that used in this analysis. An estimate of the BESIII potential to
determine the coherence factors and strong-phase differences is
obtained by reducing the uncertainties on the observables and
Yi measurements by a factor of 1/

√
3.5, then repeating the χ2

fit to the parameters. The uncertainties returned by the fit are:
σ(R Kππ0 ) = 0.04, σ(δKππ0

D ) = 8◦ , σ(R K 3π ) = 0.10, and σ(δK 3π
D ) =

8◦ . The uncertainties are not only reduced but symmetric. There-
fore, it is clear that significant improvements in the knowledge
of these parameters can be obtained from the current BESIII data
set.
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