169 research outputs found

    A century of warfare shoots holes in anti-Caulerpa campaign

    Get PDF
    Effort to have all varieties of the marine alga Caulerpa taxifolia listed as noxious weeds hinges on the argument that the alga's proliferation in the Mediterranean Sea is a cause and not a consequence of environmental degradation. Until now, the occurrence of two populations in a pristine part of the northern Mediterranean near the island of Porquerolles has upheld this claim. Here we show that the alga's development at Porquerolles is indeed a consequence of environmental degradation caused by military weapons' impacts on seagrass beds during the last century. The available data show that substratum enrichment plays a key role in fostering development of Caulerpa, irrespective of whether this results directly from pollution or from the impacts of pollution and other anthropogenic factors on benthic vegetation cover

    Reference material for radionuclides in sediment IAEA-384 (Fangataufa Lagoon sediment)

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Radioanalytical and Nuclear Chemistry 273 (2007): 383-393, doi:10.1007/s10967-007-6898-4.A reference material designed for the determination of anthropogenic and natural radionuclides in sediment, IAEA-384 (Fangataufa Lagoon sediment), is described and the results of certification are presented. The material has been certified for 8 radionuclides (40K, 60Co, 155Eu, 230Th, 238U, 238Pu, 239+240Pu and 241Am). Information values are given for 12 radionuclides (90Sr, 137Cs, 210Pb (210Po), 226Ra, 228Ra, 232Th, 234U, 235U, 239Pu, 240Pu and 241Pu). Less reported radionuclides include 228Th, 236U, 239Np and 242Pu. The reference material may be used for quality management of radioanalytical laboratories engaged in the analysis of radionuclides in the environment, as well as for the development and validation of analytical methods and for training purposes. The material is available from IAEA in 100 g units

    Beryllium-7 analyses in seawater by low background gamma-spectroscopy

    Get PDF
    Author Posting. © Akadémiai Kiadó, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Radioanalytical and Nuclear Chemistry 277 (2008): 253-259, doi:10.1007/s10967-008-0739-y.7Be is a cosmogenic isotope produced in the stratosphere and troposphere. 7Be has a half-life of 53.4 days and decays to 7Li emitting a 477 keV gamma line with a branching ratio of 0.104. It is predominantly washed out of the atmosphere through wet deposition. It is a tool for oceanographers to study air sea interaction and water mass mixing. Beryllium’s largely non-reactive nature in the open ocean makes it an excellent conservative tracer. Its conservative nature and extreme dilution in seawater also makes it difficult to concentrate and analyze. Early experiments at WHOI with Fe(OH)3 cartridges to directly collect 7Be by insitu underwater pumps proved ineffective. Collection efficiencies of the cartridges were too low to be consistently useful. At sea chemistry of whole water samples became the method of choice. The use of stable 9Be as a yield monitor further improved the accuracy of the procedure. The method was optimized at WHOI in 2005 using a seawater line that enters WHOI’s coastal research lab. The procedure was then used on an oceanographic cruise on the R/V Oceanus out of Bermuda in the oligotrophic Sargasso Sea.The authors would like to thank DOE, ONR and NSF for funding of this research

    Cesium, iodine and tritium in NW Pacific waters - a comparison of the Fukushima impact with global fallout

    Get PDF
    Radionuclide impact of the Fukushima Dai-ichi nuclear power plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column samples collected during the <i>Ka'imikai-o-Kanaloa</i> (<i>KOK</i>) international expedition carried out in June 2011 were analyzed for <sup>134</sup>Cs, <sup>137</sup>Cs, <sup>129</sup>I and <sup>3</sup>H. The <sup>137</sup>Cs, <sup>129</sup>I and <sup>3</sup>H levels in surface seawater offshore Fukushima varied between 0.002–3.5 Bq L<sup>−1</sup>, 0.01–0.8 μBq L<sup>−1</sup>, and 0.05–0.15 Bq L<sup>−1</sup>, respectively. At the sampling site about 40 km from the coast, where all three radionuclides were analyzed, the Fukushima impact on the levels of these three radionuclides represents an increase above the global fallout background by factors of about 1000, 50 and 3, respectively. The water column data indicate that the transport of Fukushima-derived radionuclides downward to the depth of 300 m has already occurred. The observed <sup>137</sup>Cs levels in surface waters and in the water column are compared with predictions obtained from the ocean general circulation model, which indicates that the Kuroshio Current acts as a southern boundary for the transport of the radionuclides, which have been transported from the Fukushima coast eastward in the NW Pacific Ocean. The <sup>137</sup>Cs inventory in the water column is estimated to be about 2.2 PBq, what can be regarded as a lower limit of the direct liquid discharges into the sea as the seawater sampling was carried out only in the area from 34 to 37° N, and from 142 to 147° E. About 4.6 GBq of <sup>129</sup>I was deposited in the NW Pacific Ocean, and 2.4–7 GBq of <sup>129</sup>I was directly discharged as liquid wastes into the sea offshore Fukushima. The total amount of <sup>3</sup>H released and deposited over the NW Pacific Ocean was estimated to be 0.1–0.5 PBq. These estimations depend, however, on the evaluation of the total <sup>137</sup>Cs activities released as liquid wastes directly into the sea, which should improve when more data are available. Due to a suitable residence time in the ocean, Fukushima-derived radionuclides will provide useful tracers for isotope oceanography studies on the transport of water masses during the next decades in the NW Pacific Ocean

    Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

    Get PDF
    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double beta decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double beta decay by measuring the decay half-life and the electron angular and energy distributions.Comment: 17 pages, 14 figures, to be published in E.P.J.

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    The observation of neutrinoless double-beta decay (0νββ{\nu}{\beta}{\beta}) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of \sim0.1 count /(FWHM\cdott\cdotyr) in the region of the signal. The current generation 76^{76}Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ{\nu}{\beta}{\beta} signal region of all 0νββ{\nu}{\beta}{\beta} experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76^{76}Ge experiment. The collaboration aims to develop a phased 0νββ{\nu}{\beta}{\beta} experimental program with discovery potential at a half-life approaching or at 102810^{28} years, using existing resources as appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017

    Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Get PDF
    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208^{208}Tl and 214^{214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m2m^2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208^{208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A\mathcal{A}(208^{208}Tl) == 1.5 μ\muBq/m2^2 is reported here. Given this level of background, a larger BiPo detector having 12 m2^2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A\mathcal{A}(208^{208}Tl) << 2 μ\muBq/kg (90% C.L.) with a six month measurement.Comment: 24 pages, submitted to N.I.M.

    Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Full text link
    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of 207Bi\rm ^{207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.Comment: 16 pages, 10 figure

    Impact of mediastinal, liver and lung 123I-metaiodobenzylguanidine (123I-MIBG) washout on calculated 123I-MIBG myocardial washout

    Get PDF
    PURPOSE: In planar (123)I-metaiodobenzylguanidine ((123)I-MIBG) myocardial imaging mediastinum (M) activity is often used as a background correction in calculating "washout" (WO). However, the most likely sources for counts that might produce errors in estimating myocardial (Myo) activity are lung (Lu) and liver (Li), which typically have higher counts/pixel (cpp) than M. The present study investigated the relationship between changes in Lu, Li and Myo activity between early and late planar (123)I-MIBG images, with comparison to M as the best estimator of non-specific background activity. METHODS: Studies on 98 subjects with both early (e) and late (l) planar (123)I-MIBG images were analysed. There were 68 subjects with chronic heart failure (CHF), 14 with hypertension (HTN) but no known heart disease and 16 controls (C). For each image, regions of interest (ROIs) were drawn: an irregular whole Myo, Lu, upper M and Li. For each ROI, WO was calculated as [(cpp(e)-cpp(l:decay corrected))/cpp(e)]x100%. RESULTS: Multivariable forward stepwise regression analysis showed that overall a significant proportion of the variation in Myo WO could be explained by a model containing M WO and Lu WO (37%, p < 0.001). Only in controls was M WO the sole variable explaining a significant proportion of the variation in Myo WO (27%, p = 0.023). CONCLUSION: Although increased Myo WO in CHF subjects reflects disease severity, part of the count differences measured on planar (123)I-MIBG myocardial images likely reflects changes in the adjacent and surrounding Lu tissue. The results for the controls suggest that this is the only group where a mediastinum correction alone may be appropriate for cardiac WO calculation

    Cryogenic characterization of a LiAlO 2 crystal and new results on spin-dependent dark matter interactions with ordinary matter: CRESST Collaboration

    Get PDF
    In this work, a first cryogenic characterization of a scintillating LiAlO 2 single crystal is presented. The results achieved show that this material holds great potential as a target for direct dark matter search experiments. Three different detector modules obtained from one crystal grown at the Leibniz-Institut für Kristallzüchtung (IKZ) have been tested to study different properties at cryogenic temperatures. Firstly, two 2.8 g twin crystals were used to build different detector modules which were operated in an above-ground laboratory at the Max Planck Institute for Physics (MPP) in Munich, Germany. The first detector module was used to study the scintillation properties of LiAlO 2 at cryogenic temperatures. The second achieved an energy threshold of (213.02 ± 1.48) eV which allows setting a competitive limit on the spin-dependent dark matter particle-proton scattering cross section for dark matter particle masses between 350MeV/c2 and 1.50GeV/c2. Secondly, a detector module with a 373 g LiAlO 2 crystal as the main absorber was tested in an underground facility at the Laboratori Nazionali del Gran Sasso (LNGS): from this measurement it was possible to determine the radiopurity of the crystal and study the feasibility of using this material as a neutron flux monitor for low-background experiments. © 2020, The Author(s)
    corecore