237 research outputs found

    Putative role of arthropod vectors in African swine fever virus transmission in relation to their bio-ecological properties

    Get PDF
    African swine fever (ASF) is one of the most important diseases in Suidae due to its significant health and socioeconomic consequences and represents a major threat to the European pig industry, especially in the absence of any available treatment or vaccine. In fact, with its high mortality rate and the subsequent trade restrictions imposed on affected countries, ASF can dramatically disrupt the pig industry in afflicted countries. In September 2018, ASF was unexpectedly identified in wild boars from southern Belgium in the province of Luxembourg, not far from the Franco-Belgian border. The French authorities rapidly commissioned an expert opinion on the risk of ASF introduction and dissemination into metropolitan France. In Europe, the main transmission routes of the virus comprise direct contact between infected and susceptible animals and indirect transmission through contaminated material or feed. However, the seasonality of the disease in some pig farms in Baltic countries, including outbreaks in farms with high biosecurity levels, have led to questions on the possible involvement of arthropods in the transmission of the virus. This review explores the current body of knowledge on the most common arthropod families present in metropolitan France. We examine their potential role in spreading ASF—by active biological or mechanical transmission or by passive transport or ingestion—in relation to their bio-ecological properties. It also highlights the existence of significant gaps in our knowledge on vector ecology in domestic and wild boar environments and in vector competence for ASFV transmission. Filling these gaps is essential to further understanding ASF transmission in order to thus implement appropriate management measures

    Brain A beta load association and sexual dimorphism of plasma BACE1 concentrations in cognitively normal individuals at risk for AD

    Get PDF
    Introduction: Successful development of effective beta-site amyloid precursor protein cleaving enzyme 1 (BACE1)-targeted therapies for early stages of Alzheimer's disease requires biomarker-guided intervention strategies. Methods: We investigated whether key biological factors such as sex, apolipoprotein E (APOE epsilon 4) allele, and age affect longitudinal plasma BACE1 concentrations in a large monocenter cohort of individuals at risk for Alzheimer's disease. We explored the relationship between plasma BACE1 concentrations and levels of brain amyloid-beta (A beta) deposition, using positron emission tomography global standard uptake value ratios. Results: Baseline and longitudinal mean concentrations of plasma BACE1 were significantly higher in women than men. We also found a positive significant impact of plasma BACE1 on baseline A beta-positron emission tomography global standard uptake value ratios. Discussion: Our results suggest a sexual dimorphism in BACE1-related upstream mechanisms of brain A beta production and deposition. We argue that plasma BACE1 should be considered in further biomarker validation and qualification studies as well as in BACE1 clinical trials. (C) 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association

    Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints : a 3-year follow-up study

    Get PDF
    Background Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer's disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE epsilon 4 allele, comorbidities, brain amyloid-beta (A beta) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. Methods Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). Results We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE epsilon 4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of A beta deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. Conclusion We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood

    Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development

    Get PDF
    Background Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed. Results We thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model) in which we could measure the effects of trisomy 21 on a large number of samples (74 in total) in a tissue that is affected in Down syndrome (the cerebellum) and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed). Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer. Conclusion High throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell population that is thought responsible for the cerebellar hypoplasia in Down syndrome, a global destabilization of gene expression was not detected. Altogether these results strongly suggest that the three-copy genes are directly responsible for the phenotype present in cerebellum. We provide here a short list of candidate genes

    Lipid dys-homeostasis contributes to APOE4-associated AD pathology

    Get PDF
    The association of the APOE4 (vs. APOE3) isoform with an increased risk of Alzheimer’s disease (AD) is unequivocal, but the underlying mechanisms remain incompletely elucidated. A prevailing hypothesis incriminates the impaired ability of APOE4 to clear neurotoxic amyloid-β peptides (Aβ) from the brain as the main mechanism linking the apolipoprotein isoform to disease etiology. The APOE protein mediates lipid transport both within the brain and from the brain to the periphery, suggesting that lipids may be potential co-factors in APOE4-associated physiopathology. The present study reveals several changes in the pathways of lipid homeostasis in the brains of mice expressing the human APOE4 vs. APOE3 isoform. Carriers of APOE4 had altered cholesterol turnover, an imbalance in the ratio of specific classes of phospholipids, lower levels of phosphatidylethanolamines bearing polyunsaturated fatty acids and an overall elevation in levels of monounsaturated fatty acids. These modifications in lipid homeostasis were related to increased production of Aβ peptides as well as augmented levels of tau and phosphorylated tau in primary neuronal cultures. This suite of APOE4-associated anomalies in lipid homeostasis and neurotoxic protein levels may be related to the accrued risk for AD in APOE4 carriers and provides novel insights into potential strategies for therapeutic intervention

    Modifications of the endosomal compartment in peripheral blood mononuclear cells and fibroblasts from Alzheimer’s disease patients

    Get PDF
    International audienceIdentification of blood-based biomarkers of Alzheimer’s disease (AD) remains a challenge. Neuropathological studies have identified enlarged endosomes in post-mortem brains as the earliest cellular change associated to AD. Here the presence of enlarged endosomes was investigated in peripheral blood mononuclear cells from 48 biologically defined AD patients (25 with mild cognitive impairment and 23 with dementia (AD-D)), and 23 age-matched healthy controls using immunocytochemistry and confocal microscopy. The volume and number of endosomes were not significantly different between AD and controls. However, the percentage of cells containing enlarged endosomes was significantly higher in the AD-D group as compared with controls. Furthermore, endosomal volumes significantly correlated to [C11]PiB cortical index measured by positron emission tomography in the AD group, independently of the APOE genotype, but not to the levels of amyloid-beta, tau and phosphorylated tau measured in the cerebrospinal fluid. Importantly, we confirmed the presence of enlarged endosomes in fibroblasts from six unrelated AD-D patients as compared with five cognitively normal controls. This study is the first, to our knowledge, to report morphological alterations of the endosomal compartment in peripheral cells from AD patients correlated to amyloid load that will now be evaluated as a possible biomarker

    Trisomy for Synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes

    Get PDF
    Enlarged early endosomes have been observed in neurons and fibroblasts in Down syndrome (DS). These endosome abnormalities have been implicated in the early development of Alzheimer's disease (AD) pathology in these subjects. Here, we show the presence of enlarged endosomes in blood mononuclear cells and lymphoblastoid cell lines (LCLs) from individuals with DS using immunofluorescence and confocal microscopy. Genotype-phenotype correlations in LCLs carrying partial trisomies 21 revealed that triplication of a 2.56 Mb locus in 21q22.11 is associated with the endosomal abnormalities. This locus contains the gene encoding the phosphoinositide phosphatase synaptojanin 1 (SYNJ1), a key regulator of the signalling phospholipid phosphatidylinositol-4,5-biphosphate that has been shown to regulate clathrin-mediated endocytosis. We found that SYNJ1 transcripts are increased in LCLs from individuals with DS and that overexpression of SYNJ1 in a neuroblastoma cell line as well as in transgenic mice leads to enlarged endosomes. Moreover, the proportion of enlarged endosomes in fibroblasts from an individual with DS was reduced after silencing SYNJ1 expression with RNA interference. In LCLs carrying amyloid precursor protein (APP) microduplications causing autosomal dominant early-onset AD, enlarged endosomes were absent, suggesting that APP overexpression alone is not involved in the modification of early endosomes in this cell type. These findings provide new insights into the contribution of SYNJ1 overexpression to the endosomal changes observed in DS and suggest an attractive new target for rescuing endocytic dysfunction and lipid metabolism in DS and in A

    MiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaints.

    Get PDF
    There is substantial experimental evidence for dysregulation of several microRNA (miRNA) expression levels in Alzheimer's disease (AD). MiRNAs modulate critical brain intracellular signaling pathways and are associated with AD core pathophysiological mechanisms. First, we conducted a real-time quantitative PCR-based pilot study to identify a set of brain-enriched miRNAs in a monocentric cohort of cognitively normal individuals with subjective memory complaints, a condition associated with increased risk of AD. Second, we investigated the impact of age, sex, and the Apolipoprotein E ε4 (APOE ε4) allele, on the identified miRNA plasma concentrations. In addition, we explored the cross-sectional and longitudinal association of the miRNAs plasma concentrations with regional brain metabolic uptake using amyloid-β (Aβ)-positron emission tomography (Aβ-PET) and 18F-fluorodeoxyglucose-PET (18F-FDG-PET). We identified a set of six brain-enriched miRNAs-miRNA-125b, miRNA-146a, miRNA-15b, miRNA-148a, miRNA-26b, and miRNA-100. Age, sex, and APOE ε4 allele were not associated with individual miRNA abundance. MiRNA-15b concentrations were significantly lower in the Aβ-PET-positive compared to Aβ-PET-negative individuals. Furthermore, we found a positive effect of the miRNA-15b*time interaction on regional metabolic 18F-FDG-PET uptake in the left hippocampus. Plasma miRNA-125b concentrations, as well as the miRNA-125b*time interaction (over a 2-year follow-up), were negatively associated with regional Aβ-PET standard uptake value ratio in the right anterior cingulate cortex. At baseline, we found a significantly negative association between plasma miRNA-125b concentrations and 18F-FDG-PET uptake in specific brain regions. In an asymptomatic at-risk population for AD, we show significant associations between plasma concentrations of miRNA-125b and miRNA-15b with core neuroimaging biomarkers of AD pathophysiology. Our results, coupled with existing experimental evidence, suggest a potential protective anti-Aβ effect of miRNA-15b and a biological link between miRNA-125b and Aβ-independent neurotoxic pathways
    corecore