8 research outputs found
The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry
<p>Abstract</p> <p>Background</p> <p>Three percent of the world's population is chronically infected with hepatitis C virus (HCV) and thus at risk of developing liver cancer. Although precise mechanisms regulating HCV entry into hepatic cells are still unknown, several cell surface proteins have been identified as entry factors for this virus. Among these molecules, the tetraspanin CD81 is essential for HCV entry. Interestingly, CD81 is also required for <it>Plasmodium </it>infection. A major characteristic of tetraspanins is their ability to interact with each other and other transmembrane proteins to build tetraspanin-enriched microdomains (TEM).</p> <p>Results</p> <p>In our study, we describe a human hepatoma Huh-7 cell clone (Huh-7w7) which has lost CD81 expression and can be infected by HCV when human CD81 (hCD81) or mouse CD81 (mCD81) is ectopically expressed. We took advantage of these permissive cells expressing mCD81 and the previously described MT81/MT81w mAbs to analyze the role of TEM-associated CD81 in HCV infection. Importantly, MT81w antibody, which only recognizes TEM-associated mCD81, did not strongly affect HCV infection. Furthermore, cholesterol depletion, which inhibits HCV infection and reduces total cell surface expression of CD81, did not affect TEM-associated CD81 levels. In addition, sphingomyelinase treatment, which also reduces HCV infection and cell surface expression of total CD81, raised TEM-associated CD81 levels.</p> <p>Conclusion</p> <p>In contrast to <it>Plasmodium </it>infection, our data show that association of CD81 with TEM is not essential for the early steps of HCV life cycle, indicating that these two pathogens, while using the same molecules, invade their host by different mechanisms.</p
A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus
In recent years, methicillin-resistant Staphylococcus aureus
(MRSA) have become a truly global challenge. In addition to the long-known
healthcare-associated clones, novel strains have also emerged outside of the
hospital settings, in the community as well as in livestock. The emergence and
spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an
additional cause for concern. In order to provide an overview of pandemic,
epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates
of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu
Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference
strains from the United States have been genotyped by DNA microarray analysis.
This technique allowed the assignment of the MRSA isolates to 34 distinct
lineages which can be clearly defined based on non-mobile genes. The results
were in accordance with data from multilocus sequence typing. More than 100
different strains were distinguished based on affiliation to these lineages,
SCCmec type and the presence or absence of PVL. These
strains are described here mainly with regard to clinically relevant
antimicrobial resistance- and virulence-associated markers, but also in relation
to epidemiology and geographic distribution. The findings of the study show a
high level of biodiversity among MRSA, especially among strains harbouring
SCCmec IV and V elements. The data also indicate a high
rate of genetic recombination in MRSA involving SCC elements, bacteriophages or
other mobile genetic elements and large-scale chromosomal replacements
A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus
In recent years, methicillin-resistant Staphylococcus aureus
(MRSA) have become a truly global challenge. In addition to the long-known
healthcare-associated clones, novel strains have also emerged outside of the
hospital settings, in the community as well as in livestock. The emergence and
spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an
additional cause for concern. In order to provide an overview of pandemic,
epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates
of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu
Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference
strains from the United States have been genotyped by DNA microarray analysis.
This technique allowed the assignment of the MRSA isolates to 34 distinct
lineages which can be clearly defined based on non-mobile genes. The results
were in accordance with data from multilocus sequence typing. More than 100
different strains were distinguished based on affiliation to these lineages,
SCCmec type and the presence or absence of PVL. These
strains are described here mainly with regard to clinically relevant
antimicrobial resistance- and virulence-associated markers, but also in relation
to epidemiology and geographic distribution. The findings of the study show a
high level of biodiversity among MRSA, especially among strains harbouring
SCCmec IV and V elements. The data also indicate a high
rate of genetic recombination in MRSA involving SCC elements, bacteriophages or
other mobile genetic elements and large-scale chromosomal replacements
Caractérisation d'inhibiteurs de l'entrée du Virus de l'Hépatite C
Hepatitis C, whose causal agent is called Hepatitis C Virus (HCV), is a global health burden with about 170 million people infected. Currently, no vaccine exists again HCV and treatments are effective for only a part of infected people. Therefore, new treatments are urgently needed, as well as a better understanding of the viral life cycle.To do so, we studied the entry process of HCV in its targets cells through the characterisation of HCV entry inhibitors. Firstly, we have shown that EWI-2wint, a natural inhibitor of HCV entry, blocks this process by changing the partitionning of CD81, one of the HCV receptors. In addition, we have studied the effect of monensin on HCV infection and found that this pharmacological inhibitor impairs a late step of HCV entry.Altogether, our results allow a better understading of the HCV entry process and open the way to the development of new therapeutic agents.L’infection par le Virus de l’Hépatite C (VHC) est un problème majeur de santépublique touchant environ 170 millions de personnes dans le monde. A l’heure actuelle, il n’existe aucun vaccin pour lutter contre le VHC et les traitements curatifs disponibles sont chers, donnent lieu à des effets secondaires très sévères et ne sont efficaces que pour une partie des patients. Le développement de nouvelles stratégies antivirales représente donc un enjeu crucial dans la lutte contre le VHC. Dans le but de développer de nouvelles molécules bloquant différentes étapes du cycle viral, une meilleure compréhension de chacune des ces étapes est nécessaire. Au cours de mon travail de thèse, nous avons étudier le mécanisme d’entrée du VHC dans ses cellules cibles, les hépatocytes. Dans un premier temps nous avons caractérisé un inhibiteur naturel de l’entrée du VHC, appelé EWI-2wint. Ce travail a notamment permis de mettre en évidence l’importance de la dynamique membranaire de l’un des récepteurs du virus, la protéine CD81, dans ce processus. Dans un second axe, nous avons étudié l’effet de la monensine sur l’infection par le VHC. Nous avons ainsi montré que cet inhibiteur pharmacologique bloque une étape tardive du processus d’entrée du VHC.L’ensemble des données accumulées au cours de ma thèse permettent de mieux comprendre le mécanisme d’entrée du VHC et ouvrent la voie au développement de nouveaux outils thérapeutiques
Characterisation of HCV entry inhibitors
L’infection par le Virus de l’Hépatite C (VHC) est un problème majeur de santépublique touchant environ 170 millions de personnes dans le monde. A l’heure actuelle, il n’existe aucun vaccin pour lutter contre le VHC et les traitements curatifs disponibles sont chers, donnent lieu à des effets secondaires très sévères et ne sont efficaces que pour une partie des patients. Le développement de nouvelles stratégies antivirales représente donc un enjeu crucial dans la lutte contre le VHC. Dans le but de développer de nouvelles molécules bloquant différentes étapes du cycle viral, une meilleure compréhension de chacune des ces étapes est nécessaire. Au cours de mon travail de thèse, nous avons étudier le mécanisme d’entrée du VHC dans ses cellules cibles, les hépatocytes. Dans un premier temps nous avons caractérisé un inhibiteur naturel de l’entrée du VHC, appelé EWI-2wint. Ce travail a notamment permis de mettre en évidence l’importance de la dynamique membranaire de l’un des récepteurs du virus, la protéine CD81, dans ce processus. Dans un second axe, nous avons étudié l’effet de la monensine sur l’infection par le VHC. Nous avons ainsi montré que cet inhibiteur pharmacologique bloque une étape tardive du processus d’entrée du VHC.L’ensemble des données accumulées au cours de ma thèse permettent de mieux comprendre le mécanisme d’entrée du VHC et ouvrent la voie au développement de nouveaux outils thérapeutiques.Hepatitis C, whose causal agent is called Hepatitis C Virus (HCV), is a global health burden with about 170 million people infected. Currently, no vaccine exists again HCV and treatments are effective for only a part of infected people. Therefore, new treatments are urgently needed, as well as a better understanding of the viral life cycle.To do so, we studied the entry process of HCV in its targets cells through the characterisation of HCV entry inhibitors. Firstly, we have shown that EWI-2wint, a natural inhibitor of HCV entry, blocks this process by changing the partitionning of CD81, one of the HCV receptors. In addition, we have studied the effect of monensin on HCV infection and found that this pharmacological inhibitor impairs a late step of HCV entry.Altogether, our results allow a better understading of the HCV entry process and open the way to the development of new therapeutic agents
Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection*
CD81 is a tetraspanin protein that is involved in several essential cellular functions, as well as in the hepatitis C virus (HCV) infection. CD81 interacts with a high stoichiometry with its partner proteins EWI-2, EWI-2wint, and EWI-F. These latter proteins modify the functions of CD81 and can thereby potentially inhibit infection or modulate cell migration. Here, we characterized the cleavage of EWI-2 leading to the production of EWI-2wint, which has been shown to inhibit HCV infection. We determined the regions of EWI-2/EWI-2wint and CD81 that are important for their interaction and their functionality. More precisely, we identified a glycine zipper motif in the transmembrane domain of EWI-2/EWI-2wint that is essential for the interaction with CD81. In addition, we found that palmitoylation on two juxtamembranous cysteines in the cytosolic tail of EWI-2/EWI-2wint is required for their interaction with CD81 as well as with CD9, another tetraspanin. Thus, we have shown that palmitoylation of a tetraspanin partner protein can influence the interaction with a tetraspanin. We therefore propose that palmitoylation not only of tetraspanins, but also of their partner proteins is important in regulating the composition of complexes in tetraspanin networks. Finally, we identified the regions in CD81 that are necessary for its functionality in HCV entry and we demonstrated that EWI-2wint needs to interact with CD81 to exert its inhibitory effect on HCV infection