44 research outputs found

    On the denaturation mechanisms of the ligand binding domain of thyroid hormone receptors

    Get PDF
    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly α-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics simulations of the TRα and TRÎČ LBDs in the absence and in the presence of the natural ligand Triac. The simulations show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary structure elements, while the structure remains essentially compact, resembling a molten globule state. This differs from most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TRα and TRÎČ subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H11, and the interaction of the region between H1 and the Ω-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.CNPqFAPESP (06/00182-8, 06/06831-8

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Amphiphilic polylactide-poly(ethylene oxide)-poly(propylene oxide) block copolymers : self-assembly behavior and cell afïŹnity

    No full text
    Polylactide (PLA) is a biodegradable polyester recognized for its potential use as a biomedical material. Poly(ethylene oxide) (PEO) and copolymers based on PEO and poly(propylene oxide) (PPO) are biocompatible polyethers widely applied in the biomedical field, particularly as macromolecular nonionic surfactants. In this work, PLA blocks were attached to the PEO and to the PEO and PPO‐based triblock copolymer PEO–PPO–PEO, through ring‐opening polymerization of racemic lactide (rac ‐LA) to obtain the amphiphilic triblock PLA–PEO–PLA and pentablock PLA–PEO–PPO–PEO–PLA copolymers containing hydrophilic/hydrophobic blocks with variable block mass ratios. The copolymers were evaluated for chemical composition, molar mass, and thermal properties, and they were used to prepare self‐assemble aggregates in water from tetrahydrofuran polymer solutions. The combination of scattering light experiments and microscopy techniques revealed the spherical morphology of the aggregates with diameters around 180–200 nm, which comprises a hydrophobic PLA core and a hydrophilic polyether shell. The aggregates are nontoxic to human cervical cancer cell line — HeLa cells, as determined by MTS assay, and the aggregates are potential candidates to be applied in the encapsulation of hydrophobic compounds561922032213CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP444392/2014-92010/17804-7; 2012/24821–0; 2015/25406–5The authors would like to acknowledge the financial support of the São Paulo Research Foundation – FAPESP (processes 2010/17804–7, 2012/24821–0, and 2015/25406–5) and of the Brazilian National Council for Scientific and Technological Development (CNPq, process 444392/2014–9). The authors thank the Brazilian Nanotechnology National Laboratory (LNNano) at the Brazilian Center for Research in Energy and Materials (CNPEM) for the use of electron microscopy and atomic force microcopy facilities. They also thank Prof. Dr Cátia C. C. O. Megiatto (Institute of Chemistry, UNICAMP) for providing HeLa cells for biological assays and Dr Annelize Zambon (Institute of Chemistry, UNICAMP) for training and technical suppor

    Structural Analysis of an Echinococcus granulosus Actin-Fragmenting Protein by Small-Angle X-Ray Scattering Studies and Molecular Modeling

    Get PDF
    The Echinococcus granulosus actin filament-fragmenting protein (EgAFFP) is a three domain member of the gelsolin family of proteins, which is antigenic to human hosts. These proteins, formed by three or six conserved domains, are involved in the dynamic rearrangements of the cytoskeleton, being responsible for severing and capping actin filaments and promoting nucleation of actin monomers. Various structures of six domain gelsolin-related proteins have been investigated, but little information on the structure of three domain members is available. In this work, the solution structure of the three domain EgAFFP has been investigated through small-angle x-ray scattering (SAXS) studies. EgAFFP exhibits an elongated molecular shape. The radius of gyration and the maximum dimension obtained by SAXS were, respectively, 2.52 ± 0.01 nm and 8.00 ± 1.00 nm, both in the absence and presence of Ca(2+). Two different molecular homology models were built for EgAFFP, but only one was validated through SAXS studies. The predicted structure for EgAFFP consists of three repeats of a central ÎČ-sheet sandwiched between one short and one long α-helix. Possible implications of the structure of EgAFFP upon actin binding are discussed

    Genetic and biochemical characterization of the MinC-FtsZ interaction in Bacillus subtilis.

    Get PDF
    Cell division in bacteria is regulated by proteins that interact with FtsZ and modulate its ability to polymerize into the Z ring structure. The best studied of these regulators is MinC, an inhibitor of FtsZ polymerization that plays a crucial role in the spatial control of Z ring formation. Recent work established that E. coli MinC interacts with two regions of FtsZ, the bottom face of the H10 helix and the extreme C-terminal peptide (CTP). Here we determined the binding site for MinC on Bacillus subtilis FtsZ. Selection of a library of FtsZ mutants for survival in the presence of Min overexpression resulted in the isolation of 13 Min-resistant mutants. Most of the substitutions that gave rise to Min resistance clustered around the H9 and H10 helices in the C-terminal domain of FtsZ. In addition, a mutation in the CTP of B. subtilis FtsZ also produced MinC resistance. Biochemical characterization of some of the mutant proteins showed that they exhibited normal polymerization properties but reduced interaction with MinC, as expected for binding site mutations. Thus, our study shows that the overall architecture of the MinC-FtsZ interaction is conserved in E. coli and B. subtilis. Nevertheless, there was a clear difference in the mutations that conferred Min resistance, with those in B. subtilis FtsZ pointing to the side of the molecule rather than to its polymerization interface. This observation suggests that the mechanism of Z ring inhibition by MinC differs in both species
    corecore