110 research outputs found

    Computational prediction of formulation strategies for beyond-rule-of-5 compounds

    Get PDF
    AbstractThe physicochemical properties of some contemporary drug candidates are moving towards higher molecular weight, and coincidentally also higher lipophilicity in the quest for biological selectivity and specificity. These physicochemical properties move the compounds towards beyond rule-of-5 (B-r-o-5) chemical space and often result in lower water solubility. For such B-r-o-5 compounds non-traditional delivery strategies (i.e. those other than conventional tablet and capsule formulations) typically are required to achieve adequate exposure after oral administration. In this review, we present the current status of computational tools for prediction of intestinal drug absorption, models for prediction of the most suitable formulation strategies for B-r-o-5 compounds and models to obtain an enhanced understanding of the interplay between drug, formulation and physiological environment. In silico models are able to identify the likely molecular basis for low solubility in physiologically relevant fluids such as gastric and intestinal fluids. With this baseline information, a formulation scientist can, at an early stage, evaluate different orally administered, enabling formulation strategies. Recent computational models have emerged that predict glass-forming ability and crystallisation tendency and therefore the potential utility of amorphous solid dispersion formulations. Further, computational models of loading capacity in lipids, and therefore the potential for formulation as a lipid-based formulation, are now available. Whilst such tools are useful for rapid identification of suitable formulation strategies, they do not reveal drug localisation and molecular interaction patterns between drug and excipients. For the latter, Molecular Dynamics simulations provide an insight into the interplay between drug, formulation and intestinal fluid. These different computational approaches are reviewed. Additionally, we analyse the molecular requirements of different targets, since these can provide an early signal that enabling formulation strategies will be required. Based on the analysis we conclude that computational biopharmaceutical profiling can be used to identify where non-conventional gateways, such as prediction of ‘formulate-ability’ during lead optimisation and early development stages, are important and may ultimately increase the number of orally tractable contemporary targets

    The polyoxyethylene/polyoxypropylene block co-polymer Poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow

    Get PDF
    AbstractSmall colloidal particulates (150 nm and below, in diameter) can be redirected specifically to the rabbit bone marrow following intravenous administration by coating their surface with the block co-polymer poloxamer-407, a non-ionic surfactant. The coated colloids are sequestered by the sinusoidal endothelial cells of the bone marrow and are accumulated in dense bodies within these cells. The uptake of poloxamer-4O7-coated colloids by marrow eondothelial cells suggests that the steric repulsive barrier, imposed by the polyoxyethylene segment of the polymer, to particle-cell interaction can apparently be overcome by a specific interaction mechanism(s) with the cell surface. Such a dramatic uptake cannot be achieved with other block co-polymers of similar structure to poloxamer-407. The application of the current model for the site-specific targeting or drug carriers to bone marrow and the prevention of the adherence of metastases of tumours which selectively colonize the bone marrow endothelium is discussed

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes

    Get PDF
    G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NK1R) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NK1R antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NK1R signaling, and causes prolonged antinociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NK1R-binding affinity and more potent inhibition of NK1R-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NK1R recruitment of βarrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NK1R signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NK1R endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NK1R antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease

    The mechanisms of pharmacokinetic food-drug interactions: A perspective from the UNGAP group

    Get PDF
    The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspective

    Fashion retailing – past, present and future

    Get PDF
    This issue of Textile Progress reviews the way that fashion retailing has developed as a result of the application of the World Wide Web and information and communications technology (ICT) by fashion-retail companies. The review therefore first considers how fashion retailing has evolved, analysing retail formats, global strategies, emerging and developing economies, and the factors that are threatening and driving growth in the fashion-retail market. The second part of the review considers the emergence of omni-channel retailing, analysing how retail has progressed and developed since the adoption of the Internet and how ICT initiatives such as mobile commerce (m-commerce), digital visualisation online, and in-store and self-service technologies have been proven to support the progression and expansion of fashion retailing. The paper concludes with recommendations on future research opportunities for gaining a better understanding of the impacts of ICT and omni-channel retailing, through which it may be possible to increase and develop knowledge and understanding of the way the sector is developing and provide fresh impetus to an already-innovative and competitive industr

    Targeting immune cells within lymph nodes

    No full text

    Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers

    No full text
    Nano-sized drug delivery systems incorporating chemotherapeutic drugs ("nano-chemotherapeutics") have been widely employed for the treatment of solid tumours. The dimensions of nanoparticulate drug delivery systems also make them ideal vectors for improving drug exposure to the lymphatic system, potentially enhancing the treatment of lymph-resident metastases. This review examines the physical properties of nanoparticulate drug delivery systems that promote lymphatic exposure and lymph node retention, and discusses methods for improving lymphatic access. Drug delivery systems that have been investigated for the treatment of lymph node metastasis are also reviewed, and recent advances towards active targeting approaches for lymphatic metastases highlighted

    Passive Tumour Targeting and Extravasation of Cylindrical Polymer Brushes in Mouse Xenografts

    No full text
    The shape-persistent nature and cylindrical conformation of cylindrical polymer brushes (CPBs) present opportunities to explore the properties of anisotropic (ie non spherical) nanomaterials in biological settings. This study shows that CPBs with lengths of up to 1 µm are able to passively target tumours via the enhanced permeation and retention (EPR) effect. Moreover, large CPBs with higher aspect ratios (ARs) were able to penetrate tumours with similar efficiencies to much smaller systems with lower ARs.This research was financially supported by The University of Sydney (M.M.) and the Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology (C.J.H.P., CE140100036)
    corecore