30 research outputs found

    The drivers and impacts of Amazon forest degradation

    Get PDF
    BACKGROUND: Most analyses of land-use and land-cover change in the Amazon forest have focused on the causes and effects of deforestation. However, anthropogenic disturbances cause degradation of the remaining Amazon forest and threaten their future. Among such disturbances, the most important are edge effects (due to deforestation and the resulting habitat fragmentation), timber extraction, fire, and extreme droughts that have been intensified by human-induced climate change. We synthesize knowledge on these disturbances that lead to Amazon forest degradation, including their causes and impacts, possible future extents, and some of the interventions required to curb them. ADVANCES: Analysis of existing data on the extent of fire, edge effects, and timber extraction between 2001 and 2018 reveals that 0.36 ×106 km2 (5.5%) of the Amazon forest is under some form of degradation, which corresponds to 112% of the total area deforested in that period. Adding data on extreme droughts increases the estimate of total degraded area to 2.5 ×106 km2, or 38% of the remaining Amazonian forests. Estimated carbon loss from these forest disturbances ranges from 0.05 to 0.20 Pg C year−1 and is comparable to carbon loss from deforestation (0.06 to 0.21 Pg C year−1). Disturbances can bring about as much biodiversity loss as deforestation itself, and forests degraded by fire and timber extraction can have a 2 to 34% reduction in dry-season evapotranspiration. The underlying drivers of disturbances (e.g., agricultural expansion or demand for timber) generate material benefits for a restricted group of regional and global actors, whereas the burdens permeate across a broad range of scales and social groups ranging from nearby forest dwellers to urban residents of Andean countries. First-order 2050 projections indicate that the four main disturbances will remain a major threat and source of carbon fluxes to the atmosphere, independent of deforestation trajectories. OUTLOOK: Whereas some disturbances such as edge effects can be tackled by curbing deforestation, others, like constraining the increase in extreme droughts, require additional measures, including global efforts to reduce greenhouse gas emissions. Curbing degradation will also require engaging with the diverse set of actors that promote it, operationalizing effective monitoring of different disturbances, and refining policy frameworks such as REDD+. These will all be supported by rapid and multidisciplinary advances in our socioenvironmental understanding of tropical forest degradation, providing a robust platform on which to co-construct appropriate policies and programs to curb it

    The drivers and impacts of Amazon forest degradation

    Get PDF
    Approximately 2.5 × 10 6 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year −1 ), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year −1 ). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest

    A Systematically Improved High Quality Genome and Transcriptome of the Human Blood Fluke Schistosoma mansoni

    Get PDF
    Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries. Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than 81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time points in the parasite's life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535 genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental dataset to underpin further advances in schistosome research

    Estudio de los Ecosistemas Marinos Vulnerables en aguas internacionales del Atlántico Sudoccidental

    Get PDF
    En este libro, basado en la mejor información científica disponible hasta la fecha, se presentan los resultados y conclusiones de una serie de trece campañas de investigación multidisciplinar realizadas entre octubre de 2007 y abril de 2010 por los componentes del Grupo ATLANTIS a bordo del B/O MIGUEL OLIVER, propiedad de la Secretaría General de Pesca (SGP). El estudio surge a raíz de la solicitud por parte de la SGP (anteriormente denominada Secretaría General del Mar) al Instituto Español de Oceanografía (IEO), para la realización de una serie de campañas de investigación multidisciplinar en aguas internacionales del Atlántico Sudoccidental, dirigidas al estudio de los Ecosistemas Marinos Vulnerables (EMVs) y de las posibles interacciones con las actividades pesqueras. El objetivo final de dichas campañas era el estudio y la identificación cuantitativa, cualitativa y geográfica de los EMVs y de los grupos taxonómicos de organismos sensibles que pudieran existir en la zona de estudio, incluyendo la propuesta de posibles zonas marinas a proteger, para una explotación sostenible de los recursos pesqueros en el ámbito del respeto a los EMVs. Los resultados que se presentan en este libro comprenden los obtenidos a través de los trabajos de geología, geomorfología, bentos, pesca, oceanografía física y análisis de contaminantes en la zona de aguas internacionales del Atlántico Sudoccidental comprendida entre los paralelos 42º y 48ºS, y la isobata de los 1500 m de profundidad (Figura 2.2). Entre estos resultados se incluye el cartografiado y una batimetría detallada de la zona, la descripción del substrato geológico y de los aspectos bentónicos, el análisis de la distribución y abundancia de las especies de mayor interés comercial, la huella de la pesquería, la identificación y descripción preliminar de los EMVs, y la propuesta de Zonas de Protección, basada en criterios Geológicos, Geomorfológicos y Biológicos. Toda esta información ha sido incorporada para su tratamiento en una plataforma SIG (Sistema de Información Geográfica) y los resultados obtenidos y presentados en este libro vienen acompañados de abundante información gráfica, como imágenes batimétricas en 3D, fotografías de bentos (infauna y epifauna), imágenes tomadas con un ROV (Remotely Operated Vehicle) y con una cámara digital submarina, así como una serie de mapas de distribución, capturas y densidad de las principales especies de interés pesquero. Se incluye también un mapa con la huella de la pesquería (1989-2010) que permita observar la incidencia de las Zonas de Protección propuestas en el área en la que faena habitualmente la flota española de arrastre de fondo. Como información adicional a la obtenida en las trece campañas de investigación, también se ha utilizado la base de datos creada con la información recogida por el Programa de Observadores del IEO entre los años 1989-2010, referente a datos comerciales, biológicos, oceanográficos y físicos (batimetría, temperatura superficial del mar y temperatura del fondo). Entre octubre de 2007 y abril de 2010 se han realizado un total de trece campañas de investigación multidisciplinar, que se han concretado en los siguientes trabajos: • 347 días efectivos de mar • Prospección de una superficie total de 59.105 km2 • Realización de un total de 91.905 km de perfiles geofísicos • 102 muestreos con draga de roca • 209 muestreos con draga box corer • 519 estaciones de CTD • 413 lances de pesca • 413 muestras de sedimentos con el colector de red • Recogida de varios miles de lotes de muestras de bentos que representan varios centenares de miles de especímenes y/o colonias • Realización de miles de fotografías de especies bentónicas, centenares de imágenes digitales de alta resolución y decenas de horas de vídeo realizadas con el ROV del barco Entre los principales resultados de los trabajos de investigación multidisciplinar presentados en este libro hay que destacar la identificación, descripción y delimitación de los EMVs, siguiendo criterios biológicos, geológicos y mixtos; la identificación de los principales grupos bentónicos indicadores de EMVs; la determinación de los valores que representan una captura significativa de los distintos taxones considerados como vulnerables según criterios de la ONU y OSPAR, y finalmente, la propuesta de áreas marinas que deberían ser consideradas como candidatas a ser protegidas. En total se proponen nueve polígonos de diferente superficie para su valoración como zonas de protección (Figura 7.5) y se hace referencia a la incidencia que el cierre de dichas zonas podría tener sobre la actividad de la flota, es decir, el grado de solapamiento entre las zonas de protección y la huella de la pesquería (Figura 7.6). Todos estos resultados se presentan acompañados de abundantes gráficas, figuras y mapas.Instituto Español de OceanografíaVersión del edito

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Ecosystem Services in a Protected Mountain Range of Portugal: Satellite-Based Products for State and Trend Analysis

    No full text
    Mountains are facing strong environmental pressures, which may jeopardize the supply of various ecosystem services. For sustainable land management, ecosystem services and their supporting functions should thus be evaluated and monitored. Satellite products have been receiving growing attention for monitoring ecosystem functioning, mainly due to their increasing temporal and spatial resolutions. Here, we aim to illustrate the high potential of satellite products, combined with ancillary in situ and statistical data, to monitor the current state and trend of ecosystem services in the Peneda-Ger?s National Park, a protected mountain range in Portugal located in a transition climatic zone (Atlantic to Mediterranean). We focused on three ecosystem services belonging to three broad categories: provisioning (reared animals), regulating (of water flows), and cultural (conservation of an endemic and iconic species). These services were evaluated using a set of different satellite products, namely grassland cover, soil moisture, and ecosystem functional attributes. In situ and statistical data were also used to compute final indicators of ecosystem services. We found a decline in the provision of reared animals since year 2000, although the area of grasslands had remained stable. The regulation of water flows had been maintained, and a strong relationship with interannual precipitation pattern was noted. In the same period, conservation of the focal iconic species might have been affected by interannual fluctuations of suitable habitat areas, with a possible influence of wildfires and precipitation. We conclude that satellite products can efficiently provide information about the current state and trend in the supply of various categories of ecosystem services, especially when combined with in situ or statistical data in robust modeling frameworks

    Ecosystem Services in a Protected Mountain Range of Portugal: Satellite-Based Products for State and Trend Analysis

    No full text
    Mountains are facing strong environmental pressures, which may jeopardize the supply of various ecosystem services. For sustainable land management, ecosystem services and their supporting functions should thus be evaluated and monitored. Satellite products have been receiving growing attention for monitoring ecosystem functioning, mainly due to their increasing temporal and spatial resolutions. Here, we aim to illustrate the high potential of satellite products, combined with ancillary in situ and statistical data, to monitor the current state and trend of ecosystem services in the Peneda-Ger?s National Park, a protected mountain range in Portugal located in a transition climatic zone (Atlantic to Mediterranean). We focused on three ecosystem services belonging to three broad categories: provisioning (reared animals), regulating (of water flows), and cultural (conservation of an endemic and iconic species). These services were evaluated using a set of different satellite products, namely grassland cover, soil moisture, and ecosystem functional attributes. In situ and statistical data were also used to compute final indicators of ecosystem services. We found a decline in the provision of reared animals since year 2000, although the area of grasslands had remained stable. The regulation of water flows had been maintained, and a strong relationship with interannual precipitation pattern was noted. In the same period, conservation of the focal iconic species might have been affected by interannual fluctuations of suitable habitat areas, with a possible influence of wildfires and precipitation. We conclude that satellite products can efficiently provide information about the current state and trend in the supply of various categories of ecosystem services, especially when combined with in situ or statistical data in robust modeling frameworks
    corecore