44 research outputs found

    Basic Caenorhabditis Elegans Methods: Synchronization And Observation

    Get PDF
    Research into the molecular and developmental biology of the nematode Caenorhabditis elegans was begun in the early seventies by Sydney Brenner and it has since been used extensively as a model organism (1). C. elegans possesses key attributes such as simplicity, transparency and short life cycle that have made it a suitable experimental system for fundamental biological studies for many years (2). Discoveries in this nematode have broad implications because many cellular and molecular processes that control animal development are evolutionary conserved (3). C. elegans life cycle goes through an embryonic stage and four larval stages before animals reach adulthood. Development can take 2 to 4 days depending on the temperature. In each of the stages several characteristic traits can be observed. The knowledge of its complete cell lineage (4,5) together with the deep annotation of its genome turn this nematode into a great model in fields as diverse as the neurobiology (6), aging (7,8), stem cell biology (9) and germ line biology (10). An additional feature that makes C. elegans an attractive model to work with is the possibility of obtaining populations of worms synchronized at a specific stage through a relatively easy protocol. The ease of maintaining and propagating this nematode added to the possibility of synchronization provide a powerful tool to obtain large amounts of worms, which can be used for a wide variety of small or high-throughput experiments such as RNAi screens, microarrays, massive sequencing, immunoblot or in situ hybridization, among others. Because of its transparency, C. elegans structures can be distinguished under the microscope using Differential Interference Contrast microscopy, also known as Nomarski microscopy. The use of a fluorescent DNA binder, DAPI (4', 6-diamidino-2-phenylindole), for instance, can lead to the specific identification and localization of individual cells, as well as subcellular structures/defects associated to them

    RSR-2, the Caenorhabditis elegans Ortholog of Human Spliceosomal Component SRm300/SRRM2, Regulates Development by Influencing the Transcriptional Machinery

    Get PDF
    Protein components of the spliceosome are highly conserved in eukaryotes and can influence several steps of the gene expression process. RSR-2, the Caenorhabditis elegans ortholog of the human spliceosomal protein SRm300/SRRM2, is essential for viability, in contrast to the yeast ortholog Cwc21p. We took advantage of mutants and RNA interference (RNAi) to study rsr-2 functions in C. elegans, and through genetic epistasis analysis found that rsr-2 is within the germline sex determination pathway. Intriguingly, transcriptome analyses of rsr-2(RNAi) animals did not reveal appreciable splicing defects but instead a slight global decrease in transcript levels. We further investigated this effect in transcription and observed that RSR-2 colocalizes with DNA in germline nuclei and coprecipitates with chromatin, displaying a ChIP-Seq profile similar to that obtained for the RNA Polymerase II (RNAPII). Consistent with a novel transcription function we demonstrate that the recruitment of RSR-2 to chromatin is splicing-independent and that RSR-2 interacts with RNAPII and affects RNAPII phosphorylation states. Proteomic analyses identified proteins associated with RSR-2 that are involved in different gene expression steps, including RNA metabolism and transcription with PRP-8 and PRP-19 being the strongest interacting partners. PRP-8 is a core component of the spliceosome and PRP-19 is the core component of the PRP19 complex, which interacts with RNAPII and is necessary for full transcriptional activity. Taken together, our study proposes that RSR-2 is a multifunctional protein whose role in transcription influences C. elegans development

    Modeling of autosomal-dominant retinitis pigmentosa in Caenorhabditis elegans uncovers a nexus between global impaired functioning of certain splicing factors and cell type-specific apoptosis

    Get PDF
    Retinitis pigmentosa (RP) is a rare genetic disease that causes gradual blindness through retinal degeneration. Intriguingly, seven of the 24 genes identified as responsible for the autosomal-dominant form (adRP) are ubiquitous spliceosome components whose impairment causes disease only in the retina. The fact that these proteins are essential in all organisms hampers genetic, genomic, and physiological studies, but we addressed these difficulties by using RNAi in Caenorhabditis elegans. Our study of worm phenotypes produced by RNAi of splicing-related adRP (s-adRP) genes functionally distinguishes between components of U4 and U5 snRNP complexes, because knockdown of U5 proteins produces a stronger phenotype. RNA-seq analyses of worms where s-adRP genes were partially inactivated by RNAi, revealed mild intron retention in developing animals but not in adults, suggesting a positive correlation between intron retention and transcriptional activity. interestingly, RNAi of s-adRP genes produces an increase in the expression of atl-1 (homolog of human ATR), which is normally activated in response to replicative stress and certain DNA-damaging agents. The up-regulation of atl-1 correlates with the ectopic expression of the pro-apoptotic gene egl-1 and apoptosis in hypodermal cells, which produce the cuticle, but not in other cell types. Our model in C. elegans resembles s-adRP in two aspects: The phenotype caused by global knockdown of s-adRP genes is cell type-specific and associated with high transcriptional activity. Finally, along with a reduced production of mature transcripts, we propose a model in which the retina-specific cell death in s-adRP patients can be induced through genomic instability

    Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation

    Get PDF
    Manipulation of neuronal activity using two-photon excitation of azobenzene photoswitches with near-infrared light has been recently demonstrated, but their practical use in neuronal tissue to photostimulate individual neurons with three-dimensional precision has been hampered by firstly, the low efficacy and reliability of NIR-induced azobenzene photoisomerization compared to one-photon excitation, and secondly, the short cis state lifetime of the two-photon responsive azo switches. Here we report the rational design based on theoretical calculations and the synthesis of azobenzene photoswitches endowed with both high two-photon absorption cross section and slow thermal back-isomerization. These compounds provide optimized and sustained two-photon neuronal stimulation both in light-scattering brain tissue and in Caenorhabditis elegans nematodes, displaying photoresponse intensities that are comparable to those achieved under one-photon excitation. This finding opens the way to use both genetically targeted and pharmacologically selective azobenzene photoswitches to dissect intact neuronal circuits in three dimensions

    Exploring the link between MORF4L1 and risk of breast cancer.

    Get PDF
    INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Transcriptional activation induced by snail 1 during epithelial-mesenchymal transition

    Get PDF
    La transició epiteli-mesènquima (TEM) és un procés en què cèl lules epitelials, immòbils i amb polaritat apico-basal transiten cap un fenotip mesenquimal o fibroblàstic. L'expressió del factor de transcripció snail1 és suficient per induir TEM en cèl lules en cultiu i és necessari per la majoria de les TEM fisiològiques descrites. Snail1 és un membre de la família de proteïnes amb dits de Zinc que reprimeix gens epitelials (com l'E-cadherina) a través de la unió directa a seqüències especifiques dels promotors anomenades caixes E i posterior reclutament de corepressors. La TEM també es caracteritza per l'activació de gens mesenquimals, però el mecanisme pel qual snail1 indueix l'expressió d'aquests és poc conegut. En aquest treball demostrem que snail1 actua a nivell transcripcional per incrementar els nivells dels marcadors mesenquimals FN1 (fibronectina) i LEF1 (de l'anglès, lymphoid enhancer-binding factor 1) a través d'un mecanisme nou per aquesta proteïna de dits de Zn que no requereix ni caixes E ni unió directa a l'ADN. A més a més, mostrem que, per a dur a terme l'activació, snail1 coopera amb dos factors de transcripció ja descrits en relació a la TEM: beta-catenina i NF-kappa-B. Els nostres resultats també proven que l'expressió forçada de la E-cadherina evita aquesta cooperació i conseqüent activació gènica. A banda d'aquest mecanisme, també hem descrit que el factor de transcripció TFCP2c, que no havia estat prèviament relacionat amb TEM, és necessari per l'activació del gen FN1 induïda per snail1.Epithelial-mesenchymal transition (EMT) is a cellular process by which no motile epithelial, apico-basal-polarized cells transit towards a motile mesenchymal front-backpolarized phenotype. Expression of the transcription factor snail1 is sufficient to induce EMT in cultured cells and it is required for most of the physiological EMTs described. Snail1 is a member of the Zn finger protein family that represses epithelial genes (such as E-cadherin) by directly binding to specific promoter sequences called E-boxes and subsequent recruitment of corepressors. EMT is also accompanied by activation of mesenchymal genes, however, little is known of how snail1 induces their expression.In this work we provide evidence that snail1 acts at the transcriptional level to increase the levels of the mesenchymal FN1 (fibronectin) and LEF1 (lymphoid enhancer-binding factor 1) genes through a novel mechanism for this Zn finger protein that does not require neither E-boxes nor direct binding to DNA. Furthermore, we describe a cooperative action in such mechanism between snail1 and two transcription factors previously related to EMT: beta-catenin and NF-kappaB. Our results also show that restoration of E-cadherin levels prevents such cooperation and subsequent activation. In addition, we also demonstrate that TFCP2c, which had not been previously linked to EMT, is also required for snail1-induced transcriptional activation of the FN1 gene

    Basic Caenorhabditis Elegans Methods: Synchronization And Observation

    No full text
    Research into the molecular and developmental biology of the nematode Caenorhabditis elegans was begun in the early seventies by Sydney Brenner and it has since been used extensively as a model organism (1). C. elegans possesses key attributes such as simplicity, transparency and short life cycle that have made it a suitable experimental system for fundamental biological studies for many years (2). Discoveries in this nematode have broad implications because many cellular and molecular processes that control animal development are evolutionary conserved (3). C. elegans life cycle goes through an embryonic stage and four larval stages before animals reach adulthood. Development can take 2 to 4 days depending on the temperature. In each of the stages several characteristic traits can be observed. The knowledge of its complete cell lineage (4,5) together with the deep annotation of its genome turn this nematode into a great model in fields as diverse as the neurobiology (6), aging (7,8), stem cell biology (9) and germ line biology (10). An additional feature that makes C. elegans an attractive model to work with is the possibility of obtaining populations of worms synchronized at a specific stage through a relatively easy protocol. The ease of maintaining and propagating this nematode added to the possibility of synchronization provide a powerful tool to obtain large amounts of worms, which can be used for a wide variety of small or high-throughput experiments such as RNAi screens, microarrays, massive sequencing, immunoblot or in situ hybridization, among others. Because of its transparency, C. elegans structures can be distinguished under the microscope using Differential Interference Contrast microscopy, also known as Nomarski microscopy. The use of a fluorescent DNA binder, DAPI (4', 6-diamidino-2-phenylindole), for instance, can lead to the specific identification and localization of individual cells, as well as subcellular structures/defects associated to them
    corecore