19 research outputs found

    Photometry of SN 2002ic and Implications for the Progenitor Mass-Loss History

    Full text link
    We present new pre-maximum and late-time optical photometry of the Type Ia/IIn supernova 2002ic. These observations are combined with the published V-band magnitudes of Hamuy et al. (2003) and the VLT spectrophotometry of Wang et al. (2004) to construct the most extensive light curve to date of this unusual supernova. The observed flux at late time is significantly higher relative to the flux at maximum than that of any other observed Type Ia supernova and continues to fade very slowly a year after explosion. Our analysis of the light curve suggests that a non-Type Ia supernova component becomes prominent 20\sim20 days after explosion. Modeling of the non-Type Ia supernova component as heating from the shock interaction of the supernova ejecta with pre-existing circumstellar material suggests the presence of a 1.71015\sim1.7 10^{15} cm gap or trough between the progenitor system and the surrounding circumstellar material. This gap could be due to significantly lower mass-loss 15(vw/10km/s)1\sim15 (v_w/10 km/s)^{-1} years prior to explosion or evacuation of the circumstellar material by a low-density fast wind. The latter is consistent with observed properties of proto-planetary nebulae and with models of white-dwarf + asymptotic giant branch star progenitor systems with the asymptotic giant branch star in the proto-planetary nebula phase.Comment: accepted for publication in Ap

    Chandra's tryst with SN 1995N

    Full text link
    We present the spectroscopic and imaging analysis of a type IIn supernova SN 1995N observed with the Chandra X-ray observatory on 2004 March 27. We compare the spectrum obtained from our Chandra observation with that of the previous observation with ASCA in 1998. We find the presence of Neon lines in the Chandra spectrum that were not reported in the ASCA observation. We see no evidence of Iron in both epochs. The observed absorption column depth indicates an extra component over and above the galactic absorption component and is possibly due to a cool dense shell between the reverse-shock and the contact discontinuity in the ejecta. The ASCA and the ROSAT observations suggested a non-linear behavior of the X-ray light curve. However, with the higher spatial resolution and sensitivity of Chandra, we separate out many nearby sources in the supernova field-of-view that had additionally contributed to the supernova flux due to the large Point Spread Function of the ASCA. Taking out the contribution of those nearby sources, we find that the light curves are consistent with a linear decline profile. We consider the light curve in the high energy band separately. We discuss our results in the context of models of nucleosynthesis and the interaction of the shock waves with the circumstellar medium in core collapse supernovae.Comment: 35 pages, 12 figures, accepted for publication in Astrophysical Journa

    Extraordinary Late-Time Infrared Emission of Type IIn Supernovae

    Full text link
    Near-Infrared (NIR) observations are presented for five Type IIn supernovae (SN 1995N, SN 1997ab, SN 1998S, SN 1999Z, and SN 1999el) that exhibit strong infrared excesses at late times (t >= 100 d). H- and K-band emission from these objects is dominated by a continuum that rises toward longer wavelengths. The data are interpreted as thermal emission from dust, probably situated in a pre-existing circumstellar nebula. The IR luminosities implied by single temperature blackbody fits are quite large,> 10^(41 - 42) erg s^-1, and the emission evolves slowly, lasting for years after maximum light. For SN 1995N, the integrated energy release via IR dust emission was 0.5 -- 1 * 10^50 erg. A number of dust heating scenarios are considered, the most likely being an infrared echo poweredby X-ray and UV emissions from the shock interaction with a dense circumstellar medium.Comment: 14 Pages, 3 Figures, Accecpted for publication in The Astrophysical Journa

    Massive stars exploding in a He-rich circumstellar medium. I. Type Ibn (SN 2006jc-like) events

    Full text link
    We present new spectroscopic and photometric data of the type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf-Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf-Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous type Ia event with some resemblance to SN 1991bg.Comment: 17 pages including 12 figures and 4 tables. Slightly revised version, conclusions unchanged, 1 figure added. Accepted for publication in MNRA

    Two transitional type~Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv

    Get PDF
    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by dm_15(B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by ~0.60 mag and ~0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by ~14% and ~9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B-V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B-V color evolution along the Lira regime suggests the progenitor of SN~2011iv had a higher central density than SN~2007on

    Robotic Observations of the Sky with TAROT: 2004--2007

    No full text
    International audienceThe TAROTs (Télescopes à Action Rapide pour les Objets Transitoires; Rapid Action Telescopes for Transient Objects) are two fully robotic observatories designed to observe the early transient optical counterpart of gamma-ray bursts (GRBs). As their occurrence is rare, we also use TAROT to observe various other celestial objects: RR Lyrae stars, minor planets and supernovae. In this paper, we describe the telescopes, their networking, and the data-processing methods used
    corecore