266 research outputs found

    Swine embryo culture and transfer for export to England

    Get PDF
    A major threat to swine enterprises is the possible introduction of disease when new breeding animals are purchased and introduced. So, methods of introducing new genetic material while minimizing the potential for introducing disease are needed. Transfer of embryos from a donor sow in another herd or country would minimize disease risks. Already used to introduce new breeding stock into Specific Pathogen Free herds and other closed herds, embryos now are placed in the recipient gilt’s or sow1s uterus within a few hours after their recovery from the donor. That method prevents export and limits application of swine embryo transfer in this country, so we evaluated the feasibility of using an in vitro culture system to store embryos between donor sows and recipient females.; Swine Day, Manhattan, KS, November 8, 197

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Hematopoietic stem cell transplantation for adult patients with isolated NPM1 mutated acute myeloid leukemia in first remission

    Get PDF
    Acute myeloid leukemia (AML) in first remission (CR1) with isolated NPM1 mutation (iNPM1m) is considered a good prognosis genotype, although up to one-third relapse. To evaluate the best transplant strategy, we retrospectively compared autologous stem cell transplantation (auto-SCT), related (MSD), and fully matched unrelated (MUD) allogeneic stem cell transplantation (allo-SCT). We identified 256 adult patients including 125 auto-SCT, 72 MSD, and 59 MUD. The 2-year leukemia-free survival (LFS) was 62% in auto-SCT, 69% in MUD, and 81% in MSD (P = .02 for MSD vs others). The 2-year overall survival (OS) was not different among auto-SCT, MUD, and MSD, reaching 83% (P = .88). The 2-year non-relapse mortality (NRM) was 2.5% in auto-SCT and 7.5% in allo-SCT (P = .04). The 2-year cumulative incidence of relapse (RI) was higher after auto-SCT (30%) than after MUD (22%) and MSD (12%, P = .01). In multivariate analysis, MSD versus auto-SCT but not MUD versus auto-SCT was associated with lower RI (P < .01 and P = .13, respectively) and better LFS (P = .01 and P = .31, respectively). Age correlated with higher NRM (P < .01). Allo-SCT using MSD appears as a reasonable transplant option for young patients with iNPM1m AML in CR1. Auto-SCT was followed by worse RI and LFS, but similar OS to both allo-SCT modalities

    Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Get PDF
    BACKGROUND: Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT) that greatly improves the production efficiency of large transgenic animals. RESULTS: The linker protein, a monoclonal antibody (mAb C), is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57) of transgenic pigs (F0 generation). CONCLUSIONS: Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species

    Facilitating tree-ring dating of historic conifer timbers using Blue Intensity

    Get PDF
    The Scottish pine network expansion has been an ongoing task since 2006 and funding must be acknowledged to the following projects: EU project ‘Millennium’ (017008-2), Leverhulme Trust project ‘RELiC: Reconstructing 8000 years of Environmental and Landscape change in the Cairngorms (F/00268/BG)’, the Native Oak and Pine project or ‘NOAP’ (Historic Scotland) and the NERC project ‘SCOT2K:Reconstructing 2000 years of Scottish climate from tree rings (NE/K003097/1)’. Further PhD funding for Milos Rydval is acknowledged from The Carnegie Trust.Dendroarchaeology almost exclusively uses ring-width (RW) data for dating historical structures and artefacts. Such data can be used to date tree-ring sequences when regional climate dominates RW variability. However, the signal in RW data can be obscured due to site specific ecological influences (natural and anthropogenic) that impact crossdating success. In this paper, using data from Scotland, we introduce a novel tree-ring parameter (Blue Intensity – BI) and explore its utility for facilitating dendro historical dating of conifer samples. BI is similar to latewood density as they both reflect the combined hemicellulose, cellulose and lignin content in the latewood cell walls of conifer species and the amount of these compounds is strongly controlled, at least for trees growing in temperature limited locations, by late summer temperatures. BI not only expresses a strong climate signal, but is also less impacted by site specific ecological influences. It can be concurrently produced with RW data from images of finely sanded conifer samples but at a significantly reduced cost compared to traditional latewood density. Our study shows that the probability of successfully crossdating historical samples is greatly increased using BI compared to RW. Furthermore, due to the large spatial extent of the summer temperature signal expressed by such data, a sparse multi-species conifer network of long BI chronologies across Europe could be used to date and loosely provenance imported material.PostprintPeer reviewe

    A common polymorphism in NR1H2 (LXRbeta) is associated with preeclampsia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preeclampsia is a frequent complication of pregnancy and a leading cause of perinatal mortality. Both genetic and environmental risk factors have been identified. Lipid metabolism, particularly cholesterol metabolism, is associated with this disease. Liver X receptors alpha (NR1H3, also known as LXRalpha) and beta (NR1H2, also known as LXRbeta) play a key role in lipid metabolism. They belong to the nuclear receptor superfamily and are activated by cholesterol derivatives. They have been implicated in preeclampsia because they modulate trophoblast invasion and regulate the expression of the endoglin (CD105) gene, a marker of preeclampsia. The aim of this study was to investigate associations between the <it>NR1H3 </it>and <it>NR1H2 </it>genes and preeclampsia.</p> <p>Methods</p> <p>We assessed associations between single nucleotide polymorphisms of <it>NR1H3 </it>(rs2279238 and rs7120118) and <it>NR1H2 </it>(rs35463555 and rs2695121) and the disease in 155 individuals with preeclampsia and 305 controls. Genotypes were determined by high-resolution melting analysis. We then used a logistic regression model to analyze the different alleles and genotypes for those polymorphisms as a function of case/control status.</p> <p>Results</p> <p>We found no association between <it>NR1H3 </it>SNPs and the disease, but the <it>NR1H2 </it>polymorphism rs2695121 was found to be strongly associated with preeclampsia (genotype C/C: adjusted odds ratio, 2.05; 95% CI, 1.04-4.05; <it>p </it>= 0.039 and genotype T/C: adjusted odds ratio, 1.85; 95% CI, 1.01-3.42; <it>p </it>= 0.049).</p> <p>Conclusions</p> <p>This study provides the first evidence of an association between the <it>NR1H2 </it>gene and preeclampsia, adding to our understanding of the links between cholesterol metabolism and this disease.</p

    Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus

    Get PDF
    Background: Eucalyptus is an important genus in industrial plantations throughout the world and is grown for use as timber, pulp, paper and charcoal. Several breeding programmes have been launched worldwide to concomitantly improve growth performance and wood properties (WPs). In this study, an interspecific cross between Eucalyptus urophylla and E. grandis was used to identify major genomic regions (Quantitative Trait Loci, QTL) controlling the variability of WPs. Results: Linkage maps were generated for both parent species. A total of 117 QTLs were detected for a series of wood and end-use related traits, including chemical, technological, physical, mechanical and anatomical properties. The QTLs were mainly clustered into five linkage groups. In terms of distribution of QTL effects, our result agrees with the typical L-shape reported in most QTL studies, i.e. most WP QTLs had limited effects and only a few (13) had major effects (phenotypic variance explained &gt; 15%). The co-locations of QTLs for different WPs as well as QTLs and candidate genes are discussed in terms of phenotypic correlations between traits, and of the function of the candidate genes. The major wood property QTL harbours a gene encoding a Cinnamoyl CoA reductase (CCR), a structural enzyme of the monolignol-specific biosynthesis pathway. Conclusions: Given the number of traits analysed, this study provides a comprehensive understanding of the genetic architecture of wood properties in this Eucalyptus full-sib pedigree. At the dawn of Eucalyptus genome sequence, it will provide a framework to identify the nature of genes underlying these important quantitative traits. (Résumé d'auteur

    Are Small GTPases Signal Hubs in Sugar-Mediated Induction of Fructan Biosynthesis?

    Get PDF
    External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling

    Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model

    Get PDF
    The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl), characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis) in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L) in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay). These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle
    corecore