146 research outputs found
An experimental study of combining evolutionary algorithms with KD-tree to solving dynamic optimisation problems
This paper studies the idea of separating the explored and unexplored regions in the search space to improve change detection and optima tracking. When an optimum is found, a simple sampling technique is used to estimate the basin of attraction of that optimum. This estimated basin is marked as an area already explored. Using a special tree-based data structure named KD-Tree to divide the search space, all explored areas can be separated from unexplored areas. Given such a division, the algorithm can focus more on searching for unexplored areas, spending only minimal resource on monitoring explored areas to detect changes in explored regions. The experiments show that the proposed algorithm has competitive performance, especially when change detection is taken into account in the optimisation process. The new algorithm was proved to have less computational complexity in term of identifying the appropriate sub-population/region for each individual. We also carry out investigations to find out why the algorithm performs well. These investigations reveal a positive impact of using the KD-Tree
Utilization of the ART approach in a group of public oral health operators in South Africa: a 5-year longitudinal study
Contains fulltext :
80990.pdf (publisher's version ) (Open Access)BACKGROUND: A significant increase in the proportion of restorations to the number of tooth extractions was reported after the introduction of ART in an academic mobile dental service in South Africa. The changes were ascribed to its less threatening procedure. Based on these findings, ART was subsequently introduced into the public oral health service of Ekurhuleni district in the South African province of Gauteng. This article reports on the 5-year restorative treatment pattern of operators in the Ekurhuleni district, who adopted the ART approach into their daily dental practice. METHODS: Of the 21 trained operators, 11 had placed more than 10% of restorations using ART at year 1 and were evaluated after 5 years. Data, including number of restored and extracted teeth and type of restoration, were drawn from clinical records 4 months before, and up to 5 years after training. The restoration/extraction ratio (REX score) and the proportion of ART restorations to the total number of restorations were calculated. The paired sample t-test and linear regression analysis were applied. RESULTS: The mean percentage of ART restorations after 1 year was 24.0% (SE 7.2) and significantly increased annually to 42.7% (SE 9.2) after 5 years in permanent dentitions. In primary dentitions the mean percentage of ART restorations after 1 year was 80.6% (SE 4.9) and 72.6% (SE 8.8) after 5 years. The mean REX score before ART training was 0.08 (SE 0.03) and 0.07 (SE 0.04) for permanent and primary teeth, respectively and 0.11 (SE 0.03) and 0.17 (SE 0.05) after 5 years. CONCLUSION: Five years after training, ART had been used consistently in this selected group of operators as the predominant restorative treatment used for primary teeth and showed a significant annual increase in permanent teeth. However, this change had not resulted in an increase in the REX score in both dentitions
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Epidemiology, Molecular Characterization and Antibiotic Resistance of Neisseria meningitidis from Patients ≤15 Years in Manhiça, Rural Mozambique
BACKGROUND: The epidemiology of meningococcal disease in Mozambique and other African countries located outside the "meningitis belt" remains widely unknown. With the event of upcoming vaccines microbiological and epidemiological information is urgently needed. METHODS: Prospective surveillance for invasive bacterial infections was conducted at the Manhiça District hospital (rural Mozambique) among hospitalized children below 15 years of age. Available Neisseria meningitidis isolates were serogrouped and characterized by Multilocus Sequence Typing (MLST). Antibiotic resistance was also determined. RESULTS: Between 1998 and 2008, sixty-three cases of confirmed meningococcal disease (36 meningitis, 26 sepsis and 1 conjunctivitis) were identified among hospitalized children. The average incidence rate of meningococcal disease was 11.6/100,000 (8/100,000 for meningitis and 3.7/100,000 for meningococcemia, respectively). There was a significant rise on the number of meningococcal disease cases in 2005-2006 that was sustained till the end of the surveillance period. Serogroup was determined for 43 of the 63 meningococcal disease cases: 38 serogroup W-135, 3 serogroup A and 2 serogroup Y. ST-11 was the most predominant sequence type and strongly associated with serogroup W-135. Two of the three serogroup A isolates were ST-1, and both serogroup Y isolates were ST-175. N. meningitidis remained highly susceptible to all antibiotics used for treatment in the country, although the presence of isolates presenting intermediate resistance to penicillin advocates for continued surveillance. CONCLUSIONS: Our data show a high rate of meningococcal disease in Manhiça, Mozambique, mainly caused by serogroup W-135 ST-11 strains, and advocates for the implementation of a vaccination strategy covering serogroup W-135 meningococci in the country
Prognostic Impact of Array-based Genomic Profiles in Esophageal Squamous Cell Cancer
Background: Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. Methods: A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. Results: Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. Conclusion: aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC
Phase-specific and lifetime costs of cancer care in Ontario, Canada
BACKGROUND: Cancer is a major public health issue and represents a significant economic burden to health care systems worldwide. The objective of this analysis was to estimate phase-specific, 5-year and lifetime net costs for the 21 most prevalent cancer sites, and remaining tumour sites combined, in Ontario, Canada. METHODS: We selected all adult patients diagnosed with a primary cancer between 1997 and 2007, with valid ICD-O site and histology codes, and who survived 30 days or more after diagnosis, from the Ontario Cancer Registry (N = 394,092). Patients were linked to treatment data from Cancer Care Ontario and administrative health care databases at the Institute for Clinical and Evaluative Sciences. Net costs (i.e., cost difference between patients and matched non-cancer control subjects) were estimated by phase of care and sex, and used to estimate 5-year and lifetime costs. RESULTS: Mean net costs of care (2009 CAD) were highest in the initial (6 months post-diagnosis) and terminal (12 months pre-death) phases, and lowest in the (3 months) pre-diagnosis and continuing phases of care. Phase-specific net costs were generally lowest for melanoma and highest for brain cancer. Mean 5-year net costs varied from less than 60,000 for multiple myeloma and leukemia. Lifetime costs ranged from less than 110,000 for leukemia, multiple myeloma, lymphoma and breast cancer. CONCLUSIONS: Costs of cancer care are substantial and vary by cancer site, phase of care and time horizon analyzed. These cost estimates are valuable to decision makers to understand the economic burden of cancer care and may be useful inputs to researchers undertaking cancer-related economic evaluations
A depauperate immune repertoire precedes evolution of sociality in bees
Background
Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris.
Results
We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman’s principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades.
Conclusions
The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts
Applications of CRISPR–Cas systems in neuroscience
Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03
- …