55 research outputs found

    Going against the flow: testing the hypothesis of pulsed axial glacier flow

    Get PDF
    Hypothesised lobe‐like flow of a temperate glacier in southeast Iceland, proposed from an analysis of ice surface crevassing patterns, is appraised from both empirical and theoretical perspectives. The hypothesis comprises the migration of individual lobes (or ‘pulses’) of ice through the glacier body, with central lobes migrating more rapidly along a narrow, central, ‘axial flow corridor’. Our alternative hypothesis is that crevasse patterns at this glacier instead reflect simple surface ice responses to stresses caused by flow over uneven bed topography. To substantiate our rejection of the lobe‐like, pulsed axial flow hypothesis, we provide: (a) evidence for a prominent transverse foliation that exhibits no evidence of shear of the required magnitude to support the hypothesis; and (b) an analysis of ice surface displacement, obtained by feature tracking, that shows a uniform flow field throughout the glacier tongue. We argue that caution needs to be exercised when interpreting glacier flow solely from crevasse patterns and observations of minor displacements along near‐surface fractures and other features

    Tillage erosion as an important driver of in‐field biomass patterns in an intensively used hummocky landscape

    Get PDF
    Tillage erosion causes substantial soil redistribution that can exceed water erosion especially in hummocky landscapes under highly mechanized large field agriculture. Consequently, truncated soil profiles can be found on hill shoulders and top slopes, whereas colluvial material is accumulated at footslopes, in depressions, and along downslope field borders. We tested the hypothesis that soil erosion substantially affects in-field patterns of the enhanced vegetation index (EVI) of different crop types on landscape scale. The interrelation between the EVI (RAPIDEYE satellite data; 5 m spatial resolution) as a proxy for crop biomass and modeled total soil erosion (tillage and water erosion modeled using SPEROS-C) was analyzed for the Quillow catchment (size: 196 km2) in Northeast Germany in a wet versus normal year for four crop types (winter wheat, maize, winter rapeseed, winter barley). Our findings clearly indicate that eroded areas had the lowest EVI values, while the highest EVI values were found in depositional areas. The differences in the EVI between erosional and depositional sites are more pronounced in the analyzed normal year. The net effect of total erosion on the EVI compared to areas without pronounced erosion or deposition ranged from −10.2% for maize in the normal year to +3.7% for winter barley in the wet year. Tillage erosion has been identified as an important driver of soil degradation affecting in-field crop biomass patterns in a hummocky ground moraine landscape. While soil erosion estimates are to be made, more attention should be given toward tillage erosion.ISSN:1085-3278ISSN:1099-145

    Effect of Multivitamin Supplementation on Measles Vaccine Response among HIV-exposed Uninfected Tanzanian Infants.

    Get PDF
    Immunization and nutritional interventions are mainstays of child health programs in sub-Saharan Africa, yet few published data exist on their interactions. HIV-exposed (but uninfected) infants enrolled in a randomized placebo-controlled trial of multivitamin supplements (vitamins B complex, C, and E) conducted in Tanzania were sampled for an assessment of measles IgG quantity and avidity at 15 to 18 months. Infants were vaccinated between 8.5 and 12 months of age, and all mothers received high-dose multivitamins as the standard of care. Of 201 HIV-exposed infants who were enrolled, 138 (68.7%) were seropositive for measles. There were no effects of infant multivitamin supplementation on measles seroconversion proportions, IgG concentrations, or IgG avidity (P > 0.05). The measles seroconversion proportion was greater for HIV-exposed infants vaccinated at 10 to 11 months of age than for those vaccinated at 8.5 to 10 months (P = 0.032) and greater for infants whose mothers had a CD4 T-cell count of <200 cells/μl than for infants whose mothers had a CD4 T-cell count of >350 cells/μl (P = 0.039). Stunted infants had a significantly decreased IgG quantity compared to nonstunted infants (P = 0.012). As for measles avidity, HIV-exposed infants vaccinated at 10 to 11 months had increased antibody avidity compared to those vaccinated at 8.5 to 10 months (P = 0.031). Maternal CD4 T-cell counts of <200 cells/μl were associated with decreased avidity compared to counts of >350 cells/μl (P = 0.047), as were lower infant height-for-age z-scores (P = 0.016). Supplementation with multivitamins containing B complex, C, and E does not appear to improve measles vaccine responses for HIV-exposed infants. Studies are needed to better characterize the impact of maternal HIV disease severity on the immune system development of HIV-exposed infants and the effect of malnutrition interventions on vaccine responses. (This study has been registered at ClinicalTrials.gov under registration no. NCT00197730.)

    Meandering rivers in modern desert basins: Implications for channel planform controls and prevegetation rivers

    Get PDF
    The influence of biotic processes in controlling the development of meandering channels in fluvial systems is controversial. The majority of the depositional history of the Earth's continents was devoid of significant biogeomorphic interactions, particularly those between vegetation and sedimentation processes. The prevailing perspective has been that prevegetation meandering channels rarely developed and that rivers with braided planforms dominated. However, recently acquired data demonstrate that meandering channel planforms are more widely preserved in prevegetation fluvial successions than previously thought. Understanding the role of prevailing fluvial dynamics in non- and poorly vegetated environments must rely on actualistic models derived from presently active rivers developed in sedimentary basins subject to desert-climate settings, the sparsest vegetated regions experiencing active sedimentation on Earth. These systems have fluvial depositional settings that most closely resemble those present in prevegetation (and extra-terrestrial) environments. Here, we present an analysis based on satellite imagery which reveals that rivers with meandering channel planforms are common in modern sedimentary basins in desert settings. Morphometric analysis of meandering fluvial channel behaviour, where vegetation is absent or highly restricted, shows that modern sparsely and non-vegetated meandering rivers occur across a range of slope gradients and basin settings, and possess a broad range of channel and meander-belt dimensions. The importance of meandering rivers in modern desert settings suggests that their abundance is likely underestimated in the prevegetation rock record, and models for recognition of their deposits need to be improved

    Changing Lake Dynamics Indicate a Drier Arctic in Western Greenland

    No full text

    Development of camera instruments onboard PLANET-C and their applications

    No full text

    Current status of Planet-C

    No full text

    ERA-PLANET, a European network for observing our changing planet

    No full text
    ERA-PLANET is a wide European network comprised of 118 researchers from 35 partner institutions located in 18 countries, aiming to strengthen the European Research Area in the domain of Earth Observation (EO) in coherence with the European participation to the Group on Earth Observation (GEO) and the program for the establishment of a European capacity for Earth Observation, COPERNICUS. It will provide more accurate, comprehensive, and authoritative information to policy and decision-makers in key societal benefit areas (SBAs), under the umbrellas of dedicated projects in the topics of: smart cities and resilient societies; resource efficiency and environmental management; global changes and environmental treaties; polar areas and natural resources. ERA-PLANET will provide advanced decision support tools and technologies aimed to better monitor our global environment and share the information and knowledge in different domains of EO by launching joint transnational calls along the above four strands. The concept of the project that tackles with strand 1, as well as an example of a specific application fitting in, are described, aspiring to promote and coordinate the &quot;smart-city&quot; approach into a European network of cities and non-European follower cities, serving the need for a common approach to enhance environmental and societal resilience to air pollution, urban growth, and urban heat islands, as well as other natural/manmade stresses and relevant impacts. This is achieved through the synergy among technology, government, and society, while at the same time creating bridges between local/national initiatives with GEO/GEOSS, COPERNICUS, and other smart cities and GEO relevant projects. The project addresses initiatives in European cities but also specific issues dealing with air quality management in other parts of the world. Finally, it places major emphasis on fully exploiting key-enabling technologies and firmly addressing interoperability issues, in the context of big &quot;smart city&quot; data, and open science. © 2017 by the authors

    ERA-PLANET, a European Network for Observing Our Changing Planet

    No full text
    ERA-PLANET is a wide European network comprised of 118 researchers from 35 partner institutions located in 18 countries, aiming to strengthen the European Research Area in the domain of Earth Observation (EO) in coherence with the European participation to the Group on Earth Observation (GEO) and the program for the establishment of a European capacity for Earth Observation, COPERNICUS. It will provide more accurate, comprehensive, and authoritative information to policy and decision-makers in key societal benefit areas (SBAs), under the umbrellas of dedicated projects in the topics of: smart cities and resilient societies; resource efficiency and environmental management; global changes and environmental treaties; polar areas and natural resources. ERA-PLANET will provide advanced decision support tools and technologies aimed to better monitor our global environment and share the information and knowledge in different domains of EO by launching joint transnational calls along the above four strands. The concept of the project that tackles with strand 1, as well as an example of a specific application fitting in, are described, aspiring to promote and coordinate the “smart-city” approach into a European network of cities and non-European follower cities, serving the need for a common approach to enhance environmental and societal resilience to air pollution, urban growth, and urban heat islands, as well as other natural/manmade stresses and relevant impacts. This is achieved through the synergy among technology, government, and society, while at the same time creating bridges between local/national initiatives with GEO/GEOSS, COPERNICUS, and other smart cities and GEO relevant projects. The project addresses initiatives in European cities but also specific issues dealing with air quality management in other parts of the world. Finally, it places major emphasis on fully exploiting key-enabling technologies and firmly addressing interoperability issues, in the context of big “smart city” data, and open science
    corecore