983 research outputs found

    The Influence of Nursing Academic Leadership on Faculty Retention

    Get PDF
    The critical nursing faculty shortage in the United States affects the ability of nursing schools to train an adequate number of nurses to meet increasing health care demands. Researchers have focused on the nursing faculty shortage; however, insufficient information exists on the relational influence leadership has on faculty retention. The research problem addressed in this study was the lack of information identifying how and in what ways leadership influences retention and intent to stay in academia. The purpose of this phenomenological study was to explore the perceptual views of current faculty, using the leader-member exchange theory. Focusing on baccalaureate nursing leaders in the state of Colorado, the research questions addressed how influential academic leaders were regarding faculty retention and intent to stay in academia. This qualitative approach included interviews with purposefully selected baccalaureate nursing faculty members. A semistructured, open-ended interview tool provided the instrument for data collection and research question alignment. Giorgi\u27s data analysis procedure was applied to explore thematic patterns and NVivo 11 software was used to categorize and code data for interpretation. The study findings identified that leaders have significant influence on faculty retention within academia through establishment of quality relationship, open communication, and impartial work environments. Dissemination of these findings can be used to directly impact health care services by retaining faculty and improving the ability to meet the increasing health care demand. Positive social change implications include the potential to retain nursing faculty, maintain educational capacity, decrease health care costs, increase health care quality, and improve access to health services

    Real-Time Recommendation of Streamed Data

    Get PDF
    This tutorial addressed two trending topics in the field of recommender systems research, namely A/B testing and real-time recommendations of streamed data. Focusing on the news domain, participants learned how to benchmark the performance of stream-based recommendation algorithms in a live recommender system and in a simulated environment

    Performance Assessment Strategies:

    Get PDF
    Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies) as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies have focused on each step of PAS and on their interrelationships. The relations between the knowledge available in pre-PAS and the challenges of the solution space exploration in explore-PAS have been highlighted. In order to facilitate the explore-PAS phase in case of large solution spaces, the support of genetic algorithms has been investigated and the exiting method ParaGen has been further implemented. Final case studies have focused on the potentials of ParaGen to identify well performing solutions; to extract knowledge during explore-PAS; and to allow interventions of the designer as an alternative to generations driven solely by coded criteria. Both the use of PAS and its recommended future developments are addressed in the thesis

    Performance Assessment Strategies

    Get PDF
    Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies) as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies have focused on each step of PAS and on their interrelationships. The relations between the knowledge available in pre-PAS and the challenges of the solution space exploration in explore-PAS have been highlighted. In order to facilitate the explore-PAS phase in case of large solution spaces, the support of genetic algorithms has been investigated and the exiting method ParaGen has been further implemented. Final case studies have focused on the potentials of ParaGen to identify well performing solutions; to extract knowledge during explore-PAS; and to allow interventions of the designer as an alternative to generations driven solely by coded criteria. Both the use of PAS and its recommended future developments are addressed in the thesis

    An unusual case of cryoglobulinemic purpura in elderly patient

    Get PDF
    Cryoglobulinemia is associated with infections, in particular chronic hepatitis C, autoimmune diseases, and lymphoproliferative disorders. Its frequency seems to be higher than is commonly considered, even in elderly patients.We describe the case of an elderly patient with diabetes, nephroangiosclerosis and purpura who presented marked and persistent increase in rheumatoid factor, hypocomplementemia and cryoglobulinemia with nephrotic disagreement unrelated to HCV. A thirteen‑month follow‑up showed neither immunorheumatologic nor neoplastic disorders. In literature, associations with hepatic pseudocyst is not described and a lack of association with HCV is very rare. Therefore, the hypothesis of “essential” mixed cryoglobulinemia (EMC) associated with nephrotic syndrome was formulated. Renal disease associated with EMC (unrelated to HCV) is characterized by the high prevalence of primary Sjögren syndrome and overt B‑cell non‑Hodgkin’s lymphoma for which repetitive clinical evaluation is necessary

    Performance Assessment Strategies:

    Get PDF
    Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies) as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies have focused on each step of PAS and on their interrelationships. The relations between the knowledge available in pre-PAS and the challenges of the solution space exploration in explore-PAS have been highlighted. In order to facilitate the explore-PAS phase in case of large solution spaces, the support of genetic algorithms has been investigated and the exiting method ParaGen has been further implemented. Final case studies have focused on the potentials of ParaGen to identify well performing solutions; to extract knowledge during explore-PAS; and to allow interventions of the designer as an alternative to generations driven solely by coded criteria. Both the use of PAS and its recommended future developments are addressed in the thesis

    The role of the kinetochore in chromosome segregation during Meiosis I

    Full text link
    La ségrégation des chromosomes est un processus complexe permettant la division égale du matériel génétique entre les cellules filles. Contrairement aux cellules somatiques, ce processus est sujet à des erreurs dans les cellules germinales telles que les ovocytes. Lorsque des erreurs surviennent lors de la ségrégation des chromosomes durant la méiose cela peut conduire à une aneuploïdie. L’aneuploïdie est la présence d’un nombre incorrect de chromosomes dans une cellule et est connue pour causer l’infertilité et des arrêts de grossesses chez l’humain. L’incidence de l’aneuploïdie augmente avec l’âge maternel (1). Le kinétochore est une structure cellulaire impliqué dans la ségrégation des chromosomes. Il est composé de plus de 100 protéines et se situe entre les microtubules et les centromères. Les microtubules se lient aux kinétochores, et ces derniers s’attachent sur les centromères afin de séparer les chromosomes homologues durant la méiose et les chromatides des sœurs pendant la mitose (1–3). Dans les cellules somatiques, cette structure est bien connue (2). Pourtant, moins d’informations sont connues à dans l’ovocyte de mammifère en développement au cours de la méiose I (3,4). Ce projet vise à étudier le rôle du kinétochore durant la ségrégation des chromosomes dans l’ovocyte de souris en développement. Plus spécifiquement, l’assemblage, le désassemblage, la dynamique et la tension des protéines du kinétochore seront évalués. Ce projet permettra de mieux comprendre le rôle du kinétochore durant la méiose I, ses implications durant la séparation des chromosomes, et éventuellement ses implications dans l’aneuploïdie.Chromosome segregation is an intricate process in dividing genetic material equally between daughter cells. This process, unlike in somatic cells, is error prone in germ cells like the oocyte. When errors occur during meiosis in segregating chromosomes, aneuploidy results when the cell has an incorrect number of chromosomes. This can result in infertility and birth defects in human reproduction. The incidences of aneuploidy are also seen to increase with increasing maternal age (1). The kinetochore is a cellular structure at the heart of chromosome segregation. It is composed of more than 100 proteins and is located between the microtubules and the centromeres. The microtubules attach onto the kinetochores, which themselves attach onto the centromeres, in order to pull the homologous chromosomes apart during meiosis and the sister chromatids during mitosis (1–3). Much is known about this multi-protein structure in somatic cells (2). Yet, very little is known about this in the developing mammalian oocyte during Meiosis I (1,3,4). This project aims to investigate the role of the kinetochore in chromosome segregation in a developing mouse oocyte. More specifically, kinetochore protein assembly, disassembly, dynamics and tension will be assessed. This project will achieve a better understanding of the kinetochore’s role in Meiosis I, its implications in chromosome segregation in a developing mouse oocyte, and how it may be involved in aneuploidy

    Central nervous system Toll-like receptor expression in response to Theiler's murine encephalomyelitis virus-induced demyelination disease in resistant and susceptible mouse strains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In immunopathological diseases, such as multiple sclerosis (MS), genetic and environmental factors that contribute to the initiation and progression of the disease are often discussed. The Theiler murine encephalomyelitis virus-induced demyelination disease (TMEV-IDD) model used to study MS reflects this: genetically susceptible mice infected intra-cerebrally with TMEV develop a chronic demyelination disease. TMEV-IDD can be induced in resistant mouse strains by inducing innate immunity with lipopolysaccharide (LPS). Interestingly, Toll-like receptor 4 (TLR4) is the cognate receptor for LPS and its activation can induces up-regulation of other TLRs, such as TLR7 (the receptor for TMEV) and 9, known to be involved in autoimmunity. Up-regulation of TLRs could be involved in precipitating an autoimmune susceptible state. Consequently, we looked at TLR expression in the susceptible (SJL/J) and resistant (C57BL/6) strains of mice infected with TMEV. The resistant mice were induced to develop TMEV-IDD by two LPS injections following TMEV infection.</p> <p>Results</p> <p>Both strains were found to up-regulate multiple TLRs (TLR2, 7 and 9) following the TMEV infection. Expression of these TLRs and of viral mRNA was significantly greater in infected SJL/J mice. The susceptible SJL/J mice showed up-regulation of TLR3, 6 and 8, which was not seen in C57BL/6 mice.</p> <p>Conclusion</p> <p>Expression of TLRs by susceptible mice and the up-regulation of the TLRs in resistant mice could participate in priming the mice toward an autoimmune state and develop TMEV-IDD. This could have implications on therapies that target TLRs to prevent the emergence of conditions such as MS in patients at risk for the disease.</p

    Doctor of Philosophy

    Get PDF
    dissertationOver 300 of the largest glaciers in southern Alaska have been identified as either surge-type or pulse-type, making glaciers with flow instabilities the norm among large glaciers in that region. Consequently, the bulk of mass loss due to climate change will come from these unstable glaciers in the future, yet their response to future climate warming is unknown because their dynamics are still poorly understood. To help broaden our understanding of unstable glacier flow, the decadal-scale ice dynamics of 1 surging and 9 pulsing glaciers are investigated. Bering Glacier had a kinematic wave moving down its ablation zone at 4.4 ± 2.0 km/yr from 2002 to 2009, which then accelerated to 13.9 ± 2.0 km/yr as it traversed the piedmont lobe. The wave first appeared in 2001 near the confluence with Bagley Ice Valley and it took 10 years to travel ~64 km. A surge was triggered in 2008 after the wave activated an ice reservoir in the midablation zone, and it climaxed in 2011 while the terminus advanced several km into Vitus Lake. Ruth Glacier pulsed five times between 1973 and 2012, with peak velocities in 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. A typical pulse increased ice velocity 300%, from roughly 40 m/yr to 160 m/yr in the midablation zone, and involved acceleration and deceleration of the ice en masse; no kinematic wave was evident. The pulses are theorized to be due to deformation of a subglacial till causing enhanced basal motion. Eight additional pulsing glaciers are identified based on the spatiotemporal pattern of their velocity fields. These glaciers pulsed where they were either constricted laterally or joined by a tributary, and their surface slopes are 1-2°. These traits are consistent with an overdeepening. This observation leads to a theory of ice motion in overdeepenings that explains the cyclical behavior of pulsing glaciers. It is based on the concept of glaciohydraulic supercooling, and includes sediment transport and erosion along an adverse slope, ice thickening, and ablation of the ice surface such that the ratio of the angle of the adverse slope to ice surface slope oscillates around the supercooling threshold
    • …
    corecore