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Abstract

Within northern peatlands, landscape elements such as vegetation and topogra-

phy are spatially heterogenic from ultra-high (centimeter level) to coarse scale.

In addition to within-site spatial heterogeneity, there is evident between-site

heterogeneity, but there is a lack of studies assessing whether different combina-

tions of remotely sensed features and mapping approaches are needed in differ-

ent types of landscapes. We evaluated the value of different mapping methods

and remote sensing datasets and analyzed the kinds of differences present in

vegetation patterns and their mappability between three northern boreal peat-

land landscapes in northern Finland. We utilized field-inventoried vegetation

plots together with spectral, textural, topography and vegetation height remote

sensing data from 0.02- to 3-m pixel size. Remote sensing data included true-

color unmanned aerial vehicle images, aerial images with four spectral bands,

aerial lidar data and multiple PlanetScope satellite images. We used random

forest regressions for tracking plant functional type (PFT) coverage, non-metric

multidimensional scaling ordination axes and fuzzy k-medoid plant community

clusters. PFT regressions had variable performance for different study sites (R2

�0.03 to 0.69). Spatial patterns of some spectrally or structurally distinctive

PFTs could be predicted relatively well. The first ordination axis represented

wetness gradient and was well predicted using remotely sensed data (R2 0.64 to

0.82), but the other three axes had a less straightforward explanation and lower

mapping performance (R2 �0.09 to 0.53). Plant community clusters were pre-

dicted most accurately in the sites with clear string-flark topography but less

accurately in the flatter site (R2 0.16–0.82). The most important remote sensing

features differed between dependent variables and study sites: different topo-

graphic, spectral and textural features; and coarse-scale and fine-scale datasets

were the most important in different tasks. We suggest that multiple different

mapping approaches should be tested and several remote sensing datasets used

when maps of vegetation are produced.

Introduction

Northern peatlands store approximately 500 Gt of carbon,

which is a substantial amount of the global terrestrial car-

bon stock (Loisel et al. 2017). Northern peatlands are also

important in terms of biodiversity (Fraixedas et al. 2017;

Saarimaa et al. 2019), water storage and hydrology

(Waddington et al. 2015) and carbon exchange (Aurela

et al. 1998, 2009; Loisel et al. 2017). Within peatlands,

many biogeochemical cycles, such as flows of carbon,

water and nutrients, are linked to vegetation (Loisel et al.

2017; Lees et al. 2018; McPartland et al. 2019). For
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instance, the amount of green vegetation, often measured

as leaf-area index or phytomass, is linked to carbon

uptake capacity and release through mineralization within

a specific landscape (Schneider et al. 2012; Peichl et al.

2015; Laine et al. 2019). As different plant species and

communities have divergent habitat requirements, the

vegetation structure at a given location indicates the

moisture and trophic status; vegetation may thus be used

as a proxy for biogeochemical fluxes (Davidson et al.

2017; Bradley-Cook and Virginia 2018). Mapping of vege-

tation is also important in showing the spatial patterns of

species distribution and biodiversity (Saarimaa et al.

2019).

Remotely sensed data enables mapping of vegetation

patterns. It has been discussed that continuous maps of

vegetation properties, such as ordination axes, fuzzy plant

community clusters or plant functional types (PFTs), cap-

ture the vegetation patterns more realistically and ecologi-

cally more meaningfully than categorical land-cover maps

(Ustin and Gamon 2010; Rocchini 2014; Harris et al.

2015; Rapinel et al. 2018; R€as€anen et al. 2019b). Ordina-

tion methods are used to quantify floristic (dis)similarity

between vegetation plots; thus, maps of ordination axis

scores represent floristic gradients (Feilhauer et al. 2011;

Harris et al. 2015). In turn, when mapping floristically

defined plant communities, it has been argued that fuzzy

clustering approaches should be preferred as plant com-

munities seldom have clear boundaries and may overlap

spatially (Rocchini 2014; Rapinel et al. 2018; R€as€anen

et al. 2019b). PFTs are a way of grouping plant species

based on their growth forms, life strategies and responses

to environmental conditions (Chapin et al. 1996; Duck-

worth et al. 2000; Ustin and Gamon 2010; Hartley et al.

2017). Maps of PFTs are especially valuable in biogeo-

chemical modeling purposes and in mapping ecosystem

functioning, such as ecosystem photosynthesis and net

carbon exchange (Ustin and Gamon 2010; Schmidtlein

et al. 2012; Kattenborn et al. 2019). There are different

types of PFT classifications (Duckworth et al. 2000; Ustin

and Gamon 2010). For instance, grouping into evergreen

and deciduous shrubs, forbs, graminoids and mosses is a

widely used approach when mapping biomass and leaf-

area index patterns (Juutinen et al. 2017; Berner et al.

2018; R€as€anen et al. 2019a) or in Earth system models

(Poulter et al. 2015; Dallmeyer et al. 2019).

It has been shown that multiple different remote sens-

ing features and data types should be included when

mapping vegetation patterns because different datasets

complement each other by providing different types of

information (Chen et al. 2017; R€as€anen and Virtanen

2019). The different types of information include, for

instance, reflectance of vegetation and other land cover

which can be obtained from passive imagery data from

multiple different platforms, including Unmanned Air-

craft Vehicles (UAV), aerial and satellite (Middleton et al.

2012; Harris et al. 2015; Kalacska et al. 2015; Palace et al.

2018). The reflectance patterns vary in space and time,

and it has been shown that inclusion of spatial variability

(i.e. texture) (Hall-Beyer 2017; Chen et al. 2018; Mishra

et al. 2018) and temporal variability indicating phenology

(Chen et al. 2017; Halabisky et al. 2018) increases map-

ping performance when detecting vegetation and land-

cover patterns. Furthermore, it has been shown that

information about topography and vegetation structure

should be included in mapping tasks. Topography and

vegetation structure can be captured with photogramme-

try or active remote sensing methods, including structure-

from-motion photogrammetry and lidar (Mercer and

Westbrook 2016; Franklin and Ahmed 2017; Shadaydeh

et al. 2017; Sankey et al. 2018; Pro�sek and �S�ımov�a 2019;

R€as€anen and Virtanen 2019; Scholefield et al. 2019).

Finally, there are scalar differences within land cover and

vegetation structure and reflectance, ranging from leaf via

canopy to landscape (Kalacska et al. 2015; Rautiainen

et al. 2018; Riihim€aki et al. 2019), suggesting that data

from multiple different spatial resolutions should be

included in mapping endeavors (R€as€anen and Virtanen

2019; Riihim€aki et al. 2019).

Within northern peatlands, landscape elements such as

vegetation, topography, moisture and trophic status vary

in multiple spatial scales. Some of the spatial differences

are evident in centimeter-level spatial resolution (i.e.

ultra-high spatial resolution) (Lehmann et al. 2016; Mer-

cer and Westbrook 2016; Lees et al. 2018; Palace et al.

2018; R€as€anen et al. 2019b). Other differences, such as

broad-scale moisture gradients, have a coarser spatial

scale (Middleton et al. 2012; Harris et al. 2015; Saarimaa

et al. 2019). Within a single peatland, both fine-scale and

coarse-scale spatial heterogeneity can be found (Harris

et al. 2015), and different peatland landscapes have diver-

gent spatial heterogeneity patterns.

We argue that the differences between different north-

ern peatlands indicate a need for comparisons between

sites. Furthermore, to the best of our knowledge, there is

a lack of studies assessing whether different combinations

of remotely sensed features and different mapping

approaches should be used when different types of peat-

land landscapes are studied. Therefore, our aim was to

compare sites, remote sensing datasets and mapping

approaches in detecting peatland vegetation patterns. We

mapped PFT %-coverage, vegetation ordination axes and

fuzzy plant community clusters in three northern boreal

peatland landscapes in northern Finland with the assis-

tance of field inventoried vegetation plots and remotely

sensed data in 0.02-m to 3-m pixel size. We asked three

research questions. Firstly, how well can peatland
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vegetation patterns be delineated with multisource and

multiresolution remotely sensed data? Secondly, what are

the optimal mapping methods and remote sensing data-

sets? Thirdly, what kind of differences are there in the

mappability of vegetation patterns between different

northern peatland study sites?

Materials and Methods

Study sites

To estimate differences in the mappability of vegetation

patterns between different northern peatland ecosystems,

we analyzed three contrasting treeless fens in northern

Finland (Fig. 1). The sites are located in a northern boreal

vegetation zone 100–200 km apart from each other but

have differing microtopographic variability (i.e. landscape

heterogeneity) offering thus an attractive comparison

triad. Continuous eddy covariance measurements of CO2

and CH4 exchange have been running at all three sites for

several years. The vegetation patterns have also been stud-

ied extensively at all sites (Aurela et al. 1998, 2004, 2009;

Maanavilja et al. 2011; Lohila et al. 2015; Dinsmore et al.

2017; R€as€anen and Virtanen 2019; R€as€anen et al. 2019b).

Nevertheless, the vegetation data have not been compared

between the sites, and the utilization of remote sensing

analyses of vegetation has been limited.

The northernmost site, Kaamanen, is characterized by a

strong pattern of dry strings covered by evergreen shrubs

and feather mosses and wet flarks with graminoid and

wet brown moss vegetation and periodical water cover

(Aurela et al. 1998, 2004; Maanavilja et al. 2011; R€as€anen

and Virtanen 2019; R€as€anen et al. 2019b). The dry strings

are up to 1 m high and 5 m wide and form a continuous

network in a winding pattern. A stream running through

the fen has riparian areas with tall sedge, deciduous shrub

Figure 1. Location of study sites in northern Finland. Field inventory plots in each study site are drawn on a true-color unmanned aerial vehicle

image. Images were taken on Aug 1, 2018 (Kaamanen), Jun 17, 2018 (Lompoloj€ankk€a) and Jul 12, 2016 (Halssiaapa).
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and forb vegetation; a pine bog zone is found at the edge

of the fen. In previous studies, four to five different plant

communities have been identified, representing string top,

string margin, wet flark, graminoid flark and riparian fen

communities (Maanavilja et al. 2011; R€as€anen et al.

2019b).

Lompoloj€ankk€a fen, located in Pallas, has a rather flat

surface patterning and is characterized by mesotrophic

vegetation (Aurela et al. 2009; Lohila et al. 2015). A small

stream runs through the study site and its riparian areas

are vegetated by approximately 60-cm-high Salix thickets.

In the middle parts of the fen, affected by a continuous

surface water flow, the vegetation patterns are dominated

by Sphagnum and wet brown mosses, graminoids, low

shrubs and some forbs. In the edges of the fen, olig-

otrophic Sphagnum-evergreen shrub vegetation can be

found.

The southernmost site, Halssiaapa fen in Sodankyl€a

(Dinsmore et al. 2017; R€as€anen et al. 2019a), has evident

fine-scale heterogeneity in wetness and trophic status pat-

terns. However, the transitions between different vegeta-

tion and microforms are more gradual than in Kaamanen

and the low strings dominated by Sphagnum and ever-

green shrubs are only some decimeters above the wet

flarks dominated by wet brown mosses and some grami-

noids. In between the flarks and strings, there are lawns

with continuous Sphagnum cover and forbs. Trophic sta-

tus varies from oligotrophic to eutrophic.

Field inventories

We sampled 141, 201 and 140 square plots with 50-cm

side length in July 2018 in Kaamanen, Lompoloj€ankk€a

and Halssiaapa respectively (Fig. 1). We chose sampling

protocols so that all relevant land cover and vegetation

types within the study sites could be covered. In Kaama-

nen and Halssiaapa, we could use existing land-cover type

mappings (R€as€anen et al. 2019b; Mikola et al. unpub-

lished data), and we used stratified random sampling with

strata being different land-cover types. The plots were

located a minimum of 3 m apart from each other and a

maximum of 200 m apart from the flux tower. In Lom-

poloj€ankk€a, we had no existing land-cover map and sam-

pled the plots systematically with a 20-m distance from

each other. The plots were geolocated with a Trimble R10

GPS device with �5 cm accuracy. We identified vascular

plant and moss species at species level and evaluated their

%-coverage with visual interpretation.

Remote sensing datasets

Our aim was to include a versatile set of different remote

sensing datasets in order to address research question 2

and to test what kind of datasets and features are the

most important when mapping different vegetation prop-

erties in different study sites. We gathered remote sensing

data about spectral, topography and vegetation height

properties captured from UAV, aerial and satellite plat-

forms with 0.02-m to 3-m spatial resolution (Table 1).

We calculated the mean value of different layers within

each field inventory plot. In total, we had 75 (Kaamanen),

87 (Lompoloj€ankk€a) and 84 (Halssiaapa) remote sensing

features (Table 1).

In all study sites, we used two true-color UAV images

collected by the authors and field technicians (Table 1).

In Kaamanen, the images were from July 2017 and

August 2018; in Lompoloj€ankk€a, from June and August

2018 and in Halssiaapa, from July 2016 and July 2018.

The inclusion of two images provided information from a

wetter and drier year (Kaamanen and Halssiaapa) and

from early and late summer (Lompoloj€ankk€a). In Kaama-

nen and Halssiaapa, the images were acquired with DJI

phantom 4 pro and in Lompoloj€ankk€a with an eBee Plus

fixed-wing drone and Matrice 210 quadrocopter.

We processed the UAV data using structure-from-mo-

tion photogrammetry and produced centimeter-resolution

image mosaics (pixel size 2–5 cm) and digital terrain

models (DTM) (pixel size 8–13 cm) for each study site

(Table 1). In Kaamanen, we georeferenced the 2018 UAV

data with 15 ground control points and the 2017 data

with 14 points. In Lompoloj€ankk€a, the June image was

georeferenced with real-time kinematic positioning, later

verified with the assistance of 13 ground control points.

The August image was co-registered with the June image

using 17 control points. In Halssiaapa, the 2018 image

was georeferenced with 15 ground control points, and the

2016 image was co-registered with the 2018 image using

20 control points. All ground control points were geolo-

cated with a Trimble R10 GPS device with � 5 cm accu-

racy.

From the UAV DTM, we calculated the following topo-

graphical features: elevation, slope in degree, topographic

position index (TPI) (Guisan et al. 1999) with 2-m and

5-m neighborhood radius and topographic wetness index

(TWI) (B€ohner and Selige 2006) (Table 1). We also cal-

culated the following eight gray-level co-occurrence

matrix textural features (Haralick et al. 1973) for each

spectral band of the July/August 2018 UAV images:

energy (texture uniformity), entropy (texture random-

ness), correlation (pixel correlation with its neighbor-

hood), inverse difference moment (texture homogeneity),

inertia (intensity contrast between a pixel and its neigh-

borhood), cluster shade, cluster prominence and Haralick

correlation. These were calculated with eight quantization

levels and a moving window technique with the neighbor-

hood distance set to five.
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To capture coarser-resolution topography and spectral

patterns as well as vegetation height information, we uti-

lized aerial orthophotos with four bands and 50-cm reso-

lution, and lidar data from the National Land Survey of

Finland (Table 1). From lidar data, we used 2-m resolu-

tion DTM preprocessed by the National Land Survey and

calculated elevation, slope, TPI (Guisan et al. 1999) with

10-m, 20-m, 50-m and 100-m neighborhood radius and

TWI (B€ohner and Selige 2006) (Table 1). We also com-

puted a digital surface model from the lidar point cloud

using all returns and then subtracted DTM from the digi-

tal surface model to obtain a canopy height model

(CHM) (Table 1).

To track the impact of phenology throughout the sum-

mer, we utilized the surface reflectance product of

PlanetScope satellite images (Planet Team 2017) from

images taken between mid-May and early October 2018

(Table 1). For each study site, we used all available cloud-

free images if they were a minimum of 6 days apart from

each other. We included 9, 13 and 12 images from Kaa-

manen, Lompoloj€ankk€a and Halssiaapa respectively. We

calculated the normalized difference vegetation index

(NDVI) (Rouse et al. 1974), normalized difference water

index (NDWI) (McFeeters 1996) and red-green index

(RGI) (Coops et al. 2006) for each image (Table 1).

Statistical analyses

To test the mappability of different vegetation properties

and address research questions 1 and 2, we mapped PFTs,

non-metric multidimensional scaling (MDS) (Kruskal

1964a,b) ordination axes and fuzzy k-medoid (Krishnapu-

ram et al. 2001) cluster membership values. With all of

these methods, continuous maps of vegetation could be

constructed. In all tasks, we conducted random forest

regressions (Breiman 2001) and predicted the vegetation

properties for field inventory plots with the calculated

remote sensing features.

For estimating PFT abundance (%) using regression

models, we calculated the %-coverage of the following

groups for each field inventory plot: evergreen dwarf

shrubs, deciduous dwarf shrubs, forbs, graminoids, wet

brown mosses, feather mosses and Sphagnum mosses. In

Lompoloj€ankk€a, we also calculated the %-coverage of

Salix spp. The amount of Salix spp. was very low in other

study sites. In addition, we added up the overall %-

Table 1. Remote sensing datasets and layers used.

Dataset Date Producer Spatial resolution Number and list of layers

UAV image 1 Aug 1, 2018 (Kaamanen) Authors 0.03 m (Kaamanen) 27: B, G, R, and 8 GLCM layers

from all spectral bandsAug 20, 2018 (Lompoloj€ankk€a) 0.02 m (Lompoloj€ankk€a)

July 11, 2018 (Halssiaapa) 0.02 m (Halssiaapa)

UAV image 2 Jul 1, 2017 (Kaamanen) Authors 0.05 m (Kaamanen) 3: B, G, R

Jun 17, 2018 (Lompoloj€ankk€a) 0.04 m (Lompoloj€ankk€a)

Jul 12, 2016 (Halssiaapa) 0.02 m (Halssiaapa)

UAV digital elevation

model

Aug 1, 2018 (Kaamanen) Authors 0.13 m (Kaamanen) 5: Elevation, slope, TPIs (2 m

and 5 m distance), TWIAug 20, 2018 (Lompoloj€ankk€a) 0.08 m (Lompoloj€ankk€a)

July 11, 2018 (Halssiaapa) 0.09 m (Halssiaapa)

Aerial image Jun 26, 2016 (Kaamanen) National Land Survey

of Finland

0.5 m 4: B, G, R, NIR

Jul 1, 2018 (Lompoloj€ankk€a)

Aug 19, 2015 (Halssiaapa)

Lidar data Jul 12, 2016 (Kaamanen) National Land Survey

of Finland

0.5 points m�2 (point

cloud) 2 m (layers)

9: Elevation, slope, TPIs (5 m,

10 m, 20 m, 50 m, 100 m

distances), TWI, CHM

Jul 13, 2018 (Lompoloj€ankk€a)

Aug 19, 2015 (Halssiaapa)

PlanetScope images May 25, Jun 16, Jul 2, Jul 10, Jul

19, Jul 29, Aug 26, Sep 9, Sep

25, 2018 (Kaamanen)

Planet Labs Inc. 3 m 27 (Kaamanen) 39

(Lompoloj€ankk€a) 36

(Halssiaapa) NDVI, NDWI, RGI

from all imagesMay 25, May 31, Jun 17, Jul 1,

Jul 11, Jul 19, Jul 29, Aug 10,

Aug 18, Aug 26, Sep 2, Sep 9,

Sep 21, 2018 (Lompoloj€ankk€a)

May 16, Jun 2, Jun 17, Jul 3, Jul

10, Jul 19, Jul 27, Aug 8, Aug

26, Sep 9, Sep 18, Oct 4, 2018

(Halssiaapa)

Abbreviations: B, blue; CHM, canopy height model; G, green; GLCM, gray-level co-occurrence matrix; NDVI, normalized difference vegetation

index; NDWI, normalized difference water index; NIR, near-infrared; R, red; RGI, red-green index; TPI, topographical position index; TWI, topo-

graphical wetness index; UAV, unmanned aerial vehicle.
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coverage of all shrubs, all vascular plants and all mosses.

Similar PFT classification has been used previously, for

example, in Hugelius et al. (2011) and R€as€anen et al.

(2019a), and it fits well with classifications presented in

Chapin et al. (1996).

For ordination axis regressions, we derived the axes

using non-metric MDS of a distance matrix of plot and

species-specific %-coverages. We transformed data values

with Wisconsin double standardization and square root

transformation, calculated the distance matrix with Bray–
Curtis distances (Bray and Curtis 1957) and tested 20

random starts. We tested a different number of axes by

evaluating the amount of stress in scaling and used four

axes, as after that there was only a marginal reduction in

the amount of stress (<0.03).
We delineated fuzzy k-medoid clusters from the four

ordination axes. In fuzzy k-medoids, representative

objects (i.e. medoids) for each cluster are selected so that

within-cluster fuzzy dissimilarity is minimized (Krishna-

puram et al. 2001). Fuzzy k-medoid is less sensitive to

outliers than fuzzy k-means algorithm and can thus be

considered a robust method (Ferraro and Giordani 2015).

We sought the optimal number of clusters using fuzzy sil-

houette, which has been shown to perform robustly when

evaluating fuzzy cluster validity (Campello and Hruschka

2006). We predicted cluster membership values for each

fuzzy cluster. In addition, we predicted crisp cluster for

each plot (i.e. the majority cluster) and evaluated the

indicator species for each crisp cluster using Dufrene–
Legendre indicator value analysis (Dufrêne and Legendre

1997). We set the fuzziness parameter to 1.5, the number

of clusters between 2 and 10 and the weighting coefficient

for the fuzzy silhouette to 1.

In random forest regressions, we set the number of fea-

tures tested at each split to one-third of the number of

features in regression and the number of trees in each

regression to 500. In all regressions, we reduced the num-

ber of features using a Boruta feature selection algorithm

(Kursa and Rudnicki 2010). Boruta is a random forest

wrapper algorithm in which those features are removed

from subsequent runs whose importance is significantly

lower than the maximum importance of randomly

derived shadow features. We used the mean decrease in

accuracy measure when evaluating feature importance

and chose all non-rejected features after 999 random for-

est runs to the final random forest regressions. We also

assessed the relative feature importance of non-rejected

features by calculating the average mean decrease in accu-

racy value over the 999 runs.

We evaluated the regression performance using a ran-

dom forest out-of-bag estimation of percentage of vari-

ance explained (pseudo R2 = 1 � (mean squared error)/

variance(response)). In out-of-bag, two-thirds of the data

in each tree are used for training and the remainder for

model evaluation (Breiman 2001); out-of-bag error statis-

tics have shown to be unbiased or even slightly conserva-

tive when compared to an independent test dataset (Clark

et al. 2010). We assessed what amount of variation in the

Bray–Curtis distance matrix is explained by the four ordi-

nation axes and fuzzy cluster membership values by using

permutational multivariate analysis of variance (PERMA-

NOVA) (Anderson 2001).

Analyses were conducted in R (R Core Team 2018)

using the packages randomForest (Liaw and Wiener

2002), Boruta (Kursa and Rudnicki 2010), vegan (Oksa-

nen et al. 2018) and fclust (Ferraro and Giordani 2015).

Results

Plant functional type regressions

PFT regressions had a variable performance for different

study sites and PFTs (Table 2). In Kaamanen, R2 was

>0.6 for evergreen shrubs as well as shrubs and vascular

plants in total and between 0.4 and 0.6 for deciduous

shrubs, forbs and feather mosses. In Lompoloj€ankk€a, R2

was >0.5 for Salix spp. and >0.3 for Sphagnum and

mosses in total. R2 values were seemingly low for other

PFTs. In Halssiaapa, R2 was >0.5 for Sphagnum, wet

brown mosses and vascular plants, and between 0.4 and

0.5 for deciduous shrubs, forbs and shrubs in total. The

performance was poor in all study sites for graminoids.

Ordination analysis and plant community
clusters

In total, 85 (Kaamanen), 94 (Lompoloj€ankk€a) and 66

(Halssiaapa) plant species were identified. When the species

distance matrix was simplified with the four MDS axes, the

stress was 0.09 in Kaamanen, 0.16 in Lompoloj€ankk€a and

0.13 in Halssiaapa. According to PERMANOVA, the four-

first MDS axes explained 44% (Kaamanen), 37% (Halssi-

aapa) and 28% (Lompoloj€ankk€a) of the variation in the

species distance matrix.

The first MDS axis represented the wetness gradient in

all study sites and could be reasonably well explained

using remotely sensed data (R2 0.82 in Kaamanen, 0.64 in

Lompoloj€ankk€a and 0.68 in Halssiaapa) (Table 2). In

Kaamanen and Halssiaapa, species occurring in wet habi-

tats had high scores on the first axis, whereas the opposite

pattern was observed in Lompoloj€ankk€a (Figs. 2–4). In

Kaamanen and Lompoloj€ankk€a, the second MDS axis was

also reasonably well predicted (R2 0.53 and 0.49 respec-

tively), whereas in Halssiaapa, prediction capability was

higher for the third axis (R2 0.40) (Table 2). In Kaama-

nen, the second MDS axis represented surface water
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impact, with species occurring in nearby streams having

high values (Fig. 2). The second axis at Lompoloj€ankk€a

and Halssiaapa as well as the third and fourth axes at all

sites had a less evident ecological interpretation (Figs. 3–
4, and Figs. S1–S3).

The optimal number of clusters was four in Kaamanen

(explaining 42% of the variation in the distance matrix

based on PERMANOVA), five in Lompoloj€ankk€a (ex-

plaining 21% of the variation) and two in Halssiaapa (ex-

plaining 22% of the variation).

In Kaamanen, the two clusters that represented the

extreme ends of the wetness gradients could be predicted

with high accuracy, with R2 values being 0.76 for the dry

string cluster 2 and 0.82 for the wet flark cluster 4 (Fig. 2,

Table 2). R2 values were <0.5 for the two other clusters

that were partly overlapping and characterized by surface

water impact and taller vegetation (graminoid-dominated

cluster 1 and tall deciduous shrub cluster 3).

In Lompoloj€ankk€a, clusters included one drier and four

wetter clusters (Fig. 3). Of these, the dry and oligotrophic

cluster 5 dominated by shrubs and sphagnum mosses

could be predicted reasonably well (R2 0.58). R2 was also

moderately high (0.44) for the cluster 3 found adjacent to

the stream and dominated by tall Salix spp., Comarum

palustre and Carex aquatilis vegetation. The three other

clusters (i.e. graminoid dominated cluster 1, Betula

nana-Salix cluster 2 and Sphagnum-low shrub cluster 4)

had R2 values < 0.3 (Table 2).

In Halssiaapa, clusters represented dry string (cluster 1)

and wet flark (cluster 2) plant communities had reason-

ably high R2 in the remote sensing-based regressions (0.59

and 0.58 respectively) (Table 2, Fig. 4). The drier cluster

1 had more indicator species and higher variation both

on the first and second MDS axis (Fig. 4).

Feature importance

Topographic, spectral and textural features were among

the most important predictors in regressions, and the

most influential remote sensing features varied between

sites and models (Fig. 5, Tables S2–S4). In different

regressions, the number of non-rejected features ranged

between 2 and 43. In Kaamanen, particularly, UAV-based

topographic features and lidar features were among the

most important ones (Fig. 5A). However, PS indices and

aerial image and UAV bands were also on the top-40 list.

Of these, the PS indices were among the most important

in the MDS and cluster regressions, but not in the PFT

regressions (Table S2). In addition, texture features were

typically rejected in different Boruta runs. PS indices were

among the most important features in Lompoloj€ankk€a;

some lidar and aerial image features were also highly

important (Fig. 5B). In contrast, there were only a few

important UAV-based features. However, in Salix and

Cluster 3 regressions, which had relatively high R2

(Table 2), many of the UAV texture features were influ-

ential (Table S3). In Halssiaapa, both spectral and topo-

graphic UAV features and aerial image bands were

included in the top-ranked features (Fig. 5C). Some PS

indices were also deemed important, but many of the PS

indices and lidar features were usually rejected (Table S4).

Discussion

While vegetation patterns could be mapped to some

extent in all study sites, the mapping performance was

best in Kaamanen, followed by Lompoloj€ankk€a and

Halssiaapa (Table 2). PFT regression models had rela-

tively good explanatory capacity in Kaamanen but seem-

ingly low in Lompoloj€ankk€a. However, in all study sites,

spatial patterns of some spectrally or structurally distinc-

tive PFTs could be predicted relatively well. These

included Sphagnum in Halssiaapa and Salix spp. in Lom-

poloj€ankk€a. In all study sites, the first ordination axis had

meaningful ecological interpretation and was well pre-

dicted using remotely sensed data. However, the picture

was less clear for other ordination axes (Figs. 2–4 and

Figs. S1–S3). Clusters were predicted most accurately in

Kaamanen and Halssiaapa with string-flark topography

but less accurately in flatter Lompoloj€ankk€a (Table 2).

The prediction accuracy is linked both to the number of

Table 2. Percentage of variation (R2) explained in random forest

regressions for different plant functional types, multidimensional scal-

ing (MDS) axes and clusters.

Regression

Kaamanen

(R2)

Lompoloj€ankk€a

(R2)

Halssiaapa

(R2)

Salix – 0.55 –

Evergreen shrubs 0.62 0.01 0.23

Deciduous shrubs 0.41 0.11 0.46

Shrubs total 0.62 0.22 0.44

Forbs 0.49 0.14 0.41

Graminoids 0.26 �0.03 0.04

Vascular plants total 0.69 0.15 0.54

Sphagnum 0.16 0.32 0.63

Wet brown mosses 0.38 0.16 0.57

Feather mosses 0.44 0.04 0.03

Mosses total 0.15 0.36 0.14

MDS1 0.82 0.64 0.68

MDS2 0.53 0.49 0.22

MDS3 0.31 0.26 0.40

MDS4 0.15 0.21 �0.09

Cluster 1 0.45 0.16 0.59

Cluster 2 0.76 0.29 0.58

Cluster 3 0.43 0.44 –

Cluster 4 0.82 0.26 –

Cluster 5 – 0.58 –
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clusters (two in Halssiaapa and five in Lompoloj€ankk€a)

and to the properties of each cluster (easily separable in

Kaamanen). In all study sites, different types of remotely

sensed features were needed in mapping tasks, suggesting

that future mapping endeavors should include mixtures

of datasets (Fig. 5).

The good mapping performance (Table 2) in Kaama-

nen was probably related to the distinctive patterns in

vegetation and microtopography. Vegetation in such envi-

ronments has also been easy to map in earlier studies

(Lehmann et al. 2016; Palace et al. 2018). Microtopo-

graphical patterns were visible in ordination axes, plant

Figure 2. Non-metric multidimensional scaling

(MDS) ordination axes and plant community

clusters for Kaamanen study site. The

statistically significant (P-value < 0.05) indicator

species for different clusters drawn on an

ordination plot where non-metric

multidimensional scaling axis 1 is on x-axis and

axis 2 on y-axis. Cluster 1 is shown with black,

cluster 2 with red, cluster 3 with green and

cluster 4 with blue. Species indicator values are

given in Table S1. “C.” refers to Carex, “S.”

to Sphagnum and “V.” to Vaccinium.

Figure 3. Non-metric multidimensional scaling

(MDS) ordination axes and plant community

clusters for Lompoloj€ankk€a study site. The

statistically significant (P-value < 0.05) indicator

species for different clusters drawn on an

ordination plot where non-metric

multidimensional scaling axis 1 is on x-axis and

axis 2 on y-axis. Cluster 1 is shown with black,

cluster 2 with red, cluster 3 with green, cluster

4 with blue, and cluster 5 with pink. Species

indicator values are given in Table S1. “C.”

refers to Carex, “S.” to Sphagnum and “V.”

to Vaccinium.
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community clusters and also in PFTs, which mainly fol-

low the wetness gradient at the fen so that shrubs and

feather mosses are mostly found on string tops, while gra-

minoids are most abundant in flarks. However, within-

microform heterogeneity hampers the detectability of

PFTs; for example, while graminoids are abundant in

some flark patches, they are almost absent in others. The

more coarse-scale variation, related to surface water

impact of the stream, could also be seen in plant clusters

and ordination axis (esp. MDS2 and Cluster 3, Fig. 2)

and predicted well with remotely sensed data (Table 2).

Mapping performance was relatively poor, in general,

in Lompoloj€ankk€a. The modeling accuracy was the high-

est for Salix, MDS1, MDS2 and compositionally unique

clusters 3 (Salix spp. adjacent to the stream) and 5 (olig-

otrophic fen edges) (Table 2). All of these mapped vege-

tation properties were more linked to coarse-scale

vegetation patterns instead of fine-resolution spatial

heterogeneity. This demonstrates that not all vegetation

variability in the northern peatlands have a fine-scale

character, in contrast to what has been discussed before

(Lehmann et al. 2016; Mercer and Westbrook 2016; Lees

et al. 2018; Palace et al. 2018). Furthermore, although

there is also a finer-scale spatial heterogeneity in the

Lompoloj€ankk€a study site, visible, for example, in plant

community clusters, it could not be captured with remote

sensing regressions. The low detectability may be ham-

pered by low topographical variation or overlapping clus-

ters. The use of other remote sensing datasets, such as

hyperspectral imagery (Middleton et al. 2012; Cole et al.

2013; Harris et al. 2015) or multispectral or thermal UAV

data, could assist in mapping the PFTs and plant commu-

nities at a fine scale.

In Halssiaapa, the performance in PFT and plant com-

munity cluster regressions were between that of

Kaamanen and Lompoloj€ankk€a (Table 2). However, the

optimal number of clusters was only two, an amount

which does not realistically illustrate the heterogeneity in

vegetation (Fig. 4). For instance, according to visual

interpretation in the field, at least three distinct micro-

forms can be found, namely, strings, lawns and flarks.

This shows the elusive vegetation patterns in the fen.

Although a string-lawn-flark pattern is visible in the fen,

the transitional zones between different microforms are

fuzzy and not as abrupt as in Kaamanen, which make the

delineation and clustering of distinct plant communities

difficult. Furthermore, there is also variability in the

trophic status patterns within the fen, which could not be

well captured with floristic or remote sensing methods. It

has also been discussed that the trophic status is not visi-

ble even in soil properties within the fen (Mikola et al.,

unpublished data). These findings illustrate that even the

remote sensing methods developed to detect continuous

vegetation patterns (Rocchini 2014; Harris et al. 2015)

may be insufficient in some cases to map vegetation. In

these cases, a solution could be combining vegetation and

remote sensing data in ordination or clustering

approaches (Rapinel et al. 2018). In PFT regressions, the

performance was especially good for Sphagnum and also

relatively good for wet brown mosses, shrubs and forbs

(Table 2). The study site has partly continuous Sphagnum

and wet brown moss cover with few vascular plants on

top, and the mosses have distinct spectral properties when

compared to areas covered by vascular plants, open water

or bare peat. It has also been found that the areas covered

by Sphagnum have unique soil properties (Mikola et al.,

unpublished data), which emphasizes the need for con-

ducting PFT or species-specific mappings in some situa-

tions (Ustin and Gamon 2010; Schmidtlein et al. 2012;

Cole et al. 2013; Kattenborn et al. 2019).

Figure 4. Non-metric multidimensional scaling

(MDS) ordination axes and plant community

clusters for Halssiaapa study site. The

statistically significant (P-value < 0.05) indicator

species for different clusters drawn on an

ordination plot where non-metric

multidimensional scaling axis 1 is on x-axis and

axis 2 on y-axis. Cluster 1 is shown with black

and cluster 2 with red. Species indicator values

are given in Table S1. “C.” refers to Carex and

“S.” to Sphagnum.

ª 2019 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 465

A. R€as€anen et al. Northern Peatland Vegetation Patterns



Figure 5. The 40 most important features for (A) Kaamanen, (B) Lompoloj€ankk€a and (C) Halssiaapa based on average Boruta score over all

regressions. Average Boruta score is shown with black line and the percentage of regressions in which the feature was deemed important with

gray columns. Used abbreviations: CHM, canopy height model; NDVI, normalized difference vegetation index; NDWI, normalized difference water

index; NIR, near infrared; PS, PlanetScope; RGI, red-green index; TPI, topographic position index; TWI, topographic wetness index; UAV,

unmanned aerial vehicle. Haralick features are numbered as follows: 1, energy; 2, entropy; 3, correlation; 4, inverse difference moment; 5, inertia;

6, cluster shade; 7, cluster prominence; 8, Haralick correlation.
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It can be argued that PFTs, ordination axes and fuzzy

clusters complement each other and reveal different types

of vegetation patterns. PFT maps are valuable in mapping

ecosystem processes (Ustin and Gamon 2010; Schmidtlein

et al. 2012; Kattenborn et al. 2019), but their drawbacks

seem to be low mapping accuracies in some cases. If the

%-cover of PFT in question is very low and its spectral

properties are not very distinct from other PFTs, it can

be expected that it is difficult or even impossible to map

it using remotely sensed data. There have also been

approaches for finding such PFT classifications and traits

that can be mapped using remote sensing (Kattenborn

et al. 2019), but such classifications should also be linked

to ecosystem functioning of interest. However, as sug-

gested before, there is a need for finding PFTs that are

optimal in their separability from an ecological, environ-

mental and remote sensing perspective (Harris et al.

2015; Kattenborn et al. 2019). PFT maps could also be

combined with categorical vegetation maps. For example,

PFT maps could show areas of high abundance of a speci-

fic PFT (e.g. shrubs, forbs) within a specific plant com-

munity or land cover. These composite maps would

illustrate multiple aspects of vegetation simultaneously.

When compared with ordination axes, plant community

clusters have a more straightforward ecological interpreta-

tion and could thus be a recommended approach. How-

ever, the ability to distinguish ordination axes and plant

communities with remotely sensed data varies between

and within study sites, suggesting that multiple

approaches could be used.

In most of the regressions, multiple different types of

features were deemed important by Boruta, and these fea-

tures were from multiple data sources (Fig. 5, Tables S2–
S4). This suggests that the inclusion of different datasets

is required for achieving the highest explanatory capacities

when mapping vegetation patterns; the finding is also

supported by previous research which has reported the

benefits of versatile data in length (e.g. Chen et al. 2017;

R€as€anen and Virtanen 2019). Similar pattern of feature

importance was visible both in spectral and structural fea-

tures; typically coarser-resolution features were more

important in Lompoloj€ankk€a, whereas in the two other

study sites, both fine-scale and coarse-scale features were

among the most important ones (Fig. 5, Tables S2–S4).
Furthermore, this feature importance pattern was visible

in all different types of regressions (i.e. PFTs, ordination

axes and plant community clusters). In spectral features,

UAV data were highly important in Kaamanen and

Halssiaapa, whereas aerial and PS data were important in

all study sites. With regards to topography, in Kaamanen,

both UAV and lidar topography features were among the

most important ones in many of the regressions, whereas

in Lompoloj€ankk€a lidar topography features were more

important; and in Halssiaapa, most important topography

features were mostly derived from UAV data.

Our results showed that high-resolution spectral and

topography features were important when detecting fine-

scale heterogeneity in vegetation patterns, especially evident

in Kaamanen and Halssiaapa (Fig. 5). This further high-

lights the need to use centimeter-resolution data in some

mapping cases, in particular if there is fine-scale variation in

vegetation, land cover and topography in the study site

(Lehmann et al. 2016; Lovitt et al. 2017; Palace et al. 2018).

However, the relative importance of the UAV data was

lower in Lompoloj€ankk€a, showing that the usage of such

data is not always a solution when attempting to detect spa-

tial heterogeneity in vegetation from above. Furthermore, in

earlier research, it has been shown that when centimeter-

resolution UAV data are replaced with 0.5-m resolution aer-

ial image data, almost equivalent performance in land-cover

mapping is achieved (R€as€anen and Virtanen 2019).

Our results showed mixed evidence when assessing the

importance of textural features (Fig. 5, Tables S2–S4).
The importance of texture was more prominent in Halssi-

aapa and Lompoloj€ankk€a than in Kaamanen. This might

be related to the fact that in Kaamanen, the performance

in different regressions was higher and most of the vege-

tation patterns were easily identifiable also without tex-

ture. An earlier study conducted in Kaamanen showed

that texture helps mapping performance in situations

where there are few other features in the model; however,

when the model includes multiple features from multiple

datasets, texture might not be useful (R€as€anen and Virta-

nen 2019). Nevertheless, our work indicates that there is

between-site variation in the importance of textural (and

also other) features in mapping tasks.

PS images were useful in detecting coarse-scale pat-

terns and areas with distinct phenology within peat-

lands. In Kaamanen, the early summer PS images in

particular helped in mapping the second MDS axis and

plant community clusters (Table S2). The second MDS

axis was linked to surface water impact and the clusters

also differed in relation to the axis (Fig. 2). In visual

inspection of the early summer PS images, it could be

seen that areas close to the stream had a distinct spec-

tral property due to spring flooding (i.e. low NDVI and

high NDWI), but this pattern was not evident in the

images taken later during the growing season. This

highlights the need to include datasets from different

phenological or hydrological phases in mapping tasks

(Chen et al. 2017; Halabisky et al. 2018) or to include

datasets of the optimal phenological stage (Cole et al.

2014; Juutinen et al. 2017). This could be seen also in

Lompoloj€ankk€a, where the good performance of the PS

indices was probably linked to the fact that, with the

PS indices, the peatland edge and riparian area
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vegetation could be distinguished from the other areas

in the peatland. The riparian areas are wetter and peat-

land edge drier than the rest of the peatland especially

in the beginning of growing season. Furthermore, in

mapping these patterns, the extra spectral information

in the form of spectral indices relying on near-infrared

reflectance was probably helpful.

Conclusions

We compared different remote sensing datasets and

approaches for detecting spatial patterns of vegetation

properties across three northern boreal peatland study sites.

Our results highlight that there rarely is a one-size-fits-all

approach with which peatland vegetation could be grouped

and mapped; instead, the optimal strategies depend on the

structure of peatland in question. We showed that there

was notable between-site variation in mapping perfor-

mance, there were differences between sites as to which

kind of regressions (i.e. PFTs, ordination axes, plant com-

munity clusters) had the highest explanatory capacities,

and that in all study sites different types of features derived

from multiple data sources were among the most impor-

tant ones in regressions. Based on these findings, we pro-

pose some suggestions for future mapping tasks. First,

multiple different mapping approaches should be tested

and evaluated, and the optimal mapping approach should

be chosen based on the study site and need. Second, multi-

ple different remote sensing datasets should be included in

the mapping, including datasets capturing both structural

and spectral properties of vegetation. Third, as different

mapping approaches complement each other, multiple dif-

ferent maps, including maps showing one vegetation char-

acteristic and composite maps combining multiple

characteristics, should be produced to illustrate the differ-

ent aspects of vegetation within the studied landscape.

Uncertainties, caveats and benefits should be explicitly

reported for each map.
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