133 research outputs found
Characteristic molecular properties of one-electron double quantum rings under magnetic fields
The molecular states of conduction electrons in laterally coupled quantum
rings are investigated theoretically. The states are shown to have a distinct
magnetic field dependence, which gives rise to periodic fluctuations of the
tunnel splitting and ring angular momentum in the vicinity of the ground state
crossings. The origin of these effects can be traced back to the Aharonov-Bohm
oscillations of the energy levels, along with the quantum mechanical tunneling
between the rings. We propose a setup using double quantum rings which shows
that Aharonov-Bohm effects can be observed even if the net magnetic flux
trapped by the carriers is zero.Comment: 16 pages (iopart format), 10 figures, accepted in J.Phys.Cond.Mat
Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution
We analyse cosmological hydrodynamical simulations of galaxy clusters to
study the X-ray scaling relations between total masses and observable
quantities such as X-ray luminosity, gas mass, X-ray temperature, and .
Three sets of simulations are performed with an improved version of the
smoothed particle hydrodynamics GADGET-3 code. These consider the following:
non-radiative gas, star formation and stellar feedback, and the addition of
feedback by active galactic nuclei (AGN). We select clusters with , mimicking the typical selection of
Sunyaev-Zeldovich samples. This permits to have a mass range large enough to
enable robust fitting of the relations even at . The results of the
analysis show a general agreement with observations. The values of the slope of
the mass-gas mass and mass-temperature relations at are 10 per cent lower
with respect to due to the applied mass selection, in the former case,
and to the effect of early merger in the latter. We investigate the impact of
the slope variation on the study of the evolution of the normalization. We
conclude that cosmological studies through scaling relations should be limited
to the redshift range , where we find that the slope, the scatter, and
the covariance matrix of the relations are stable. The scaling between mass and
is confirmed to be the most robust relation, being almost independent of
the gas physics. At higher redshifts, the scaling relations are sensitive to
the inclusion of AGNs which influences low-mass systems. The detailed study of
these objects will be crucial to evaluate the AGN effect on the ICM.Comment: 24 pages, 11 figures, 5 tables, replaced to match accepted versio
An improved SPH scheme for cosmological simulations
We present an implementation of smoothed particle hydrodynamics (SPH) with
improved accuracy for simulations of galaxies and the large-scale structure. In
particular, we combine, implement, modify and test a vast majority of SPH
improvement techniques in the latest instalment of the GADGET code. We use the
Wendland kernel functions, a particle wake-up time-step limiting mechanism and
a time-dependent scheme for artificial viscosity, which includes a high-order
gradient computation and shear flow limiter. Additionally, we include a novel
prescription for time-dependent artificial conduction, which corrects for
gravitationally induced pressure gradients and largely improves the SPH
performance in capturing the development of gas-dynamical instabilities. We
extensively test our new implementation in a wide range of hydrodynamical
standard tests including weak and strong shocks as well as shear flows,
turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas
clouds. We jointly employ all modifications; however, when necessary we study
the performance of individual code modules. We approximate hydrodynamical
states more accurately and with significantly less noise than standard SPH.
Furthermore, the new implementation promotes the mixing of entropy between
different fluid phases, also within cosmological simulations. Finally, we study
the performance of the hydrodynamical solver in the context of radiative galaxy
formation and non-radiative galaxy cluster formation. We find galactic disks to
be colder, thinner and more extended and our results on galaxy clusters show
entropy cores instead of steadily declining entropy profiles. In summary, we
demonstrate that our improved SPH implementation overcomes most of the
undesirable limitations of standard SPH, thus becoming the core of an efficient
code for large cosmological simulations.Comment: 21 figures, 2 tables, accepted to MNRA
Persistent Currents in Small, Imperfect Hubbard Rings
We have done a study with small, imperfect Hubbard rings with exact
diagonalization. The results for few-electron rings show, that the
imperfection, whether localized or not, nearly always decrease, but can also
\emph{increase} the persistent current, depending on the character of the
imperfection and the on-site interaction. The calculations are generally in
agreement with more specialized studies. In most cases the electron spin plays
an important role.Comment: 6 pages, 4 figure
Differential Effects of Vpr on Single-cycle and Spreading HIV-1 Infections in CD4+ T-cells and Dendritic Cells
The Vpr protein of human immunodeficiency virus type 1 (HIV-1) contributes to viral replication in non-dividing cells, specifically those of the myeloid lineage. However, the effects of Vpr in enhancing HIV-1 infection in dendritic cells have not been extensively investigated. Here, we evaluated the role of Vpr during infection of highly permissive peripheral blood mononuclear cells (PBMCs) and CD4+ T-cells and compared it to that of monocyte-derived dendritic cells (MDDCs), which are less susceptible to HIV-1 infection. Infections of dividing PBMCs and non-dividing MDDCs were carried out with single-cycle and replication-competent HIV-1 encoding intact Vpr or Vpr-defective mutants. In contrast to previous findings, we observed that single-cycle HIV-1 infection of both PBMCs and MDDCs was significantly enhanced in the presence of Vpr when the viral stocks were carefully characterized and titrated. HIV-1 DNA quantification revealed that Vpr only enhanced the reverse transcription and nuclear import processes in single-cycle HIV-1 infected MDDCs, but not in CD4+ T-cells. However, a significant enhancement in HIV-1 gag mRNA expression was observed in both CD4+ T-cells and MDDCs in the presence of Vpr. Furthermore, Vpr complementation into HIV-1 virions did not affect single-cycle viral infection of MDDCs, suggesting that newly synthesized Vpr plays a significant role to facilitate single-cycle HIV-1 infection. Over the course of a spreading infection, Vpr significantly enhanced replication-competent HIV-1 infection in MDDCs, while it modestly promoted viral infection in activated PBMCs. Quantification of viral DNA in replication-competent HIV-1 infected PBMCs and MDDCs revealed similar levels of reverse transcription products, but increased nuclear import in the presence of Vpr independent of the cell types. Taken together, our results suggest that Vpr has differential effects on single-cycle and spreading HIV-1 infections, which are dependent on the permissiveness of the target cell
Shaken Snow Globes:Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters
We propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups, and clusters, exploring both simulations and observations. As emerged in the recent picture of top-down multiphase condensation, hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (∼10 7 K) are perturbed by subsonic turbulence, warm (∼10 4 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (<100 K) raining in the core via chaotic cold accretion (CCA). We show that all phases are tightly linked in terms of the ensemble (wide-aperture) velocity dispersion along the line of sight. The correlation arises in complementary long-term AGN feedback simulations and high-resolution CCA runs, and is corroborated by the combined Hitomi and new Integral Field Unit measurements in the Perseus cluster. The ensemble multiphase gas distributions (from the UV to the radio band) are characterized by substantial spectral line broadening (σ v,los ≈ 100-200 ) with a mild line shift. On the other hand, pencil-beam detections (as H i absorption against the AGN backlight) sample the small-scale clouds displaying smaller broadening and significant line shifts of up to several 100 (for those falling toward the AGN), with increased scatter due to the turbulence intermittency. We present new ensemble σ v,los of the warm H+[N ii] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). Finally, we show that the physically motivated criterion C ≡ t cool/t eddy ≈ 1 best traces the condensation extent region and the presence of multiphase gas in observed clusters and groups. The ensemble method can be applied to many available spectroscopic data sets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions. </p
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
The XXL Survey IV. Mass-temperature relation of the bright cluster sample
The XXL survey is the largest survey carried out by XMM-Newton. Covering an area of 50deg, the survey contains galaxy clusters out to a redshift 2 and to an X-ray flux limit of . This paper is part of the first release of XXL results focussed on the bright cluster sample. We investigate the scaling relation between weak-lensing mass and X-ray temperature for the brightest clusters in XXL. The scaling relation is used to estimate the mass of all 100 clusters in XXL-100-GC. Based on a subsample of 38 objects that lie within the intersection of the northern XXL field and the publicly available CFHTLenS catalog, we derive the of each system with careful considerations of the systematics. The clusters lie at and span a range of . We combine our sample with 58 clusters from the literature, increasing the range out to 10keV. To date, this is the largest sample of clusters with measurements that has been used to study the mass-temperature relation. The fit () to the XXL clusters returns a slope and intrinsic scatter ; the scatter is dominated by disturbed clusters. The fit to the combined sample of 96 clusters is in tension with self-similarity, and . Overall our results demonstrate the feasibility of ground-based weak-lensing scaling relation studies down to cool systems of temperature and highlight that the current data and samples are a limit to our statistical precision. As such we are unable to determine whether the validity of hydrostatic equilibrium is a function of halo mass. An enlarged sample of cool systems, deeper weak-lensing data, and robust modelling of the selection function will help to explore these issues further
Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity
Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection
Unbound Particles in Dark Matter Halos
We investigate unbound dark matter particles in halos by tracing particle
trajectories in a simulation run to the far future (a = 100). We find that the
traditional sum of kinetic and potential energies is a very poor predictor of
which dark matter particles will eventually become unbound from halos. We also
study the mass fraction of unbound particles, which increases strongly towards
the edges of halos, and decreases significantly at higher redshifts. We discuss
implications for dark matter detection experiments, precision calibrations of
the halo mass function, the use of baryon fractions to constrain dark energy,
and searches for intergalactic supernovae.Comment: Significant improvements following referee suggestion
- …