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ABSTRACT
We present an implementation of smoothed particle hydrodynamics (SPH) with improved
accuracy for simulations of galaxies and the large-scale structure. In particular, we implement
and test a vast majority of SPH improvement in the developer version of GADGET-3. We
use the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a
time-dependent scheme for artificial viscosity including high-order gradient computation and
shear flow limiter. Additionally, we include a novel prescription for time-dependent artificial
conduction, which corrects for gravitationally induced pressure gradients and improves the
SPH performance in capturing the development of gas-dynamical instabilities. We extensively
test our new implementation in a wide range of hydrodynamical standard tests including weak
and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydrostatic equilibria
and self-gravitating gas clouds. We jointly employ all modifications; however, when necessary
we study the performance of individual code modules. We approximate hydrodynamical states
more accurately and with significantly less noise than standard GADGET-SPH. Furthermore, the
new implementation promotes the mixing of entropy between different fluid phases, also within
cosmological simulations. Finally, we study the performance of the hydrodynamical solver
in the context of radiative galaxy formation and non-radiative galaxy cluster formation. We
find galactic discs to be colder and more extended and galaxy clusters showing entropy cores
instead of steadily declining entropy profiles. In summary, we demonstrate that our improved
SPH implementation overcomes most of the undesirable limitations of standard GADGET-SPH,
thus becoming the core of an efficient code for large cosmological simulations.
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1 IN T RO D U C T I O N

Smoothed particle hydrodynamics (SPH) is a commonly employed
numerical method in astrophysics. It solves the fluid equations
(Landau & Lifshitz 1959) in a Lagrangian mass-discretized fashion,
which ensures Galilean invariance and conservation of mass, mo-
mentum, angular momentum, energy and entropy. It was pioneered

� E-mail: abeck@usm.uni-muenchen.de

by Gingold & Monaghan (1977) and Lucy (1977) and has since then
become one of the cornerstones of computational astrophysics. The
discretization of mass automatically adapts spatial resolution by re-
moving the constraint of handling geometry explicitly. It also easily
couples to N-Body schemes for calculation of gravitational forces
(Hernquist & Katz 1989). An excessive amount of papers and lit-
erature about SPH has been produced over the past decades. We
point out the latest reviews by Rosswog (2009), Springel (2010b),
Monaghan (2012) and Price (2012a) for the basic concepts and e.g.
Ritchie & Thomas (2001) for an extension to multiphase fluids and
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Rosswog (2015) for a special-relativistic adaption. As every numer-
ical method, SPH comes with its own set of benefits and pitfalls,
which we address in this paper.

The inability of traditional SPH methods to treat contact disconti-
nuities and to mix different fluid phases is a long-standing problem
(Agertz et al. 2007; Wadsley, Veeravalli & Couchman 2008). It
leads to a completely numerical spurious surface tension at the dis-
continuities preventing particle movements. Consequently, it results
in a failure of these formulations of SPH to resolve fluid instabili-
ties such as the Kelvin–Helmholtz or Rayleigh–Taylor instabilities
(see e.g. Junk et al. 2010; Valcke et al. 2010; McNally, Lyra &
Passy 2012; Puri & Ramachandran 2014). In applications to cosmic
structure formation it causes entropy profiles to diverge towards the
centres of dark matter haloes, at variance with Eulerian codes that
predict entropy plateaus to build up (Frenk et al. 1999; Wadsley
et al. 2008; Planelles & Quilis 2009; Vazza 2011; Power, Read &
Hobbs 2014; Biffi & Valdarnini 2015; Rasia et al. 2015). This dif-
ference is due to the lack of mixing in simple SPH, which makes
low-entropy gas in merging substructures sink towards the centre
of the main structure. Many modifications have been proposed to
overcome this problem. For example, Wadsley et al. (2008) propose
a mixing solution, which resolves the differences in the entropy
profiles of dark matter haloes between Eulerian and SPH codes
(Frenk et al. 1999). Further cosmological applications have been
performed by Shen, Wadsley & Stinson (2010). First, the equation
of motion (EoM) can be re-formulated from a standard ‘density’
approach into a ‘pressure’ based approach (Hopkins 2013; Saitoh
& Makino 2013). While the ‘pressure’ formulation correctly treats
contact discontinuities, it leads to increased noise at strong shocks.
Secondly, considerable effort has been made to unite grid-based
solvers for the fluid equations with the Lagrangian nature of SPH.
Eulerian Godunov methods (see e.g. Cha, Inutsuka & Nayakshin
2010; Springel 2010a; Murante et al. 2011) and their coupling to
Lagrangian methods is a promising alternative. Connecting a La-
grangian moving-mesh with grid-based solvers (Springel 2010a)
or mesh-free approaches (Hopkins 2015; Hopkins & Raives 2015)
represent more advanced approaches. Thirdly, artificial conduction
(AC) of internal energy can be employed to overcome the mixing
problem. Most modern SPH codes include AC of some sort to dif-
fuse entropy (Read & Hayfield 2012) or energy (Price 2008) across
particles. The use of AC has to be taken carefully and it is only
desirable at contact discontinuities in traditional ‘density’ SPH and
at shocks in modern ‘pressure’ SPH. The application of AC in other
regions can have catastrophic impact on the fluid dynamics and
can smear out gravitationally established pressure gradients, thus
leading to totally numerically induced transport of internal energy
(Valdarnini 2012).

Next, traditional SPH has difficulties treating subsonic turbulence
as it experiences a high effective viscosity, which limits the iner-
tial range (see e.g. Bauer & Springel 2012). Thus, traditional SPH
cannot achieve high Reynolds’ numbers compared to, for example,
Eulerian methods. This high effective viscosity is a function of res-
olution, but no general solution has yet been proposed to resolve
this issue in general. For the correct capturing of shocks numeri-
cally motivated artificial viscosity (AV) is commonly employed. It
smooths the particle velocity distribution and gives order to the fluid
sampling. However, AV is only desired at the shock and the fluid
should be inviscid otherwise. Too much AV smears out physical
motions and damps subsonic and turbulent motions in isolated tests
(Bauer & Springel 2012) as well as in cosmological simulations
(Dolag et al. 2005). Therefore, several different implementations of
AV reduction are proposed (Morris & Monaghan 1997; Cullen &

Dehnen 2010). They are all based around a proper shock detection
method and a time-dependent viscosity decay scheme. Application
of such advanced schemes give better results in the description of
fluid motions (Dolag et al. 2005; Price 2012b).

Finally, it might seem easy to simply reduce the quantitative er-
rors by increasing the number of neighbours, which contribute to the
local density and force estimators. However, the standard weighting
functions of SPH respond differently to an increase of smoothing
neighbours and can possibly become unstable to the pairing instabil-
ity (Schuessler & Schmitt 1981; Price 2012a). Therefore, recently,
alternative kernel functions immune against this instability are pro-
posed for better fluid sampling and convergence (Read, Hayfield
& Agertz 2010; Dehnen & Aly 2012). The advantage of flexible
geometry of SPH comes with difficulties in creating well-defined
initial conditions or sampling analytical profiles, where we use ei-
ther glass set-ups (White 1996) or Weighted Voronoi-Tesselations
(Diehl et al. 2012).

To overcome the named disadvantages, we implement a large set
of improvements for SPH into the developer version of the cosmo-
logical N-Body/SPH simulation code GADGET-3 (Springel, Yoshida
& White 2001; Springel 2005). We include a time-step limiter for
strong shocks, a time-dependent viscosity scheme for subsonic tur-
bulence, a high-order gradient estimator and shear flow limiter for
shearing motions, an improved kernel function for convergence
and a time-dependent artificial conduction scheme to promote fluid
mixing. We discuss the accuracy and the performance of our new
scheme in hydrodynamical standard test problems, within quiet and
violent environments as well as in idealized simulations of galaxy
and galaxy cluster formation, in which our new scheme is applied
to reasonable astrophysical problems.

The paper is organized as follows. The improved implementa-
tion of hydrodynamics is presented in Section 2. In Section 3, we
validate our SPH algorithms in a set of hydrodynamical standard
tests and we proceed to standard tests with gravity in Section 4. We
continue in Section 5 with idealized applications to the evolution of
an isolated disc galaxy and a forming galaxy cluster. We summarize
our developments and code performance in Section 6.

2 A NEW SPH I MPLEMENTATI ON

We start with a presentation of the main equations corresponding
to a ‘standard’ and our ‘new’ formalism of GADGET-SPH. The for-
malism of SPH is already well described by a large number of
reviews (see e.g. Price 2012a). We refer to the ‘standard’ version
of SPH as the implementation within the GADGET-3 code without
our modifications. We point out our modifications and discuss the
kernel function, the EoM, the particle wake-up scheme and the
time-dependent AV and AC.

2.1 Original code platform

We implement our SPH modifications into the developer version of
the cosmological N-Body/SPH code GADGET-3 (Springel et al. 2001;
Springel 2005). We evolve entropy as the thermodynamical variable
(Springel & Hernquist 2002) and use the prescriptions for radiative
cooling, supernova feedback and star formation following Springel
& Hernquist (2003). In the following sections, we compare two
different SPH schemes (see also Table 1), which are distinguished
as follows. The ‘standard’ implementation corresponds to the de-
veloper version of GADGET-3 without our modifications (Springel
2005). The ‘new’ implementation includes all the SPH improve-
ments presented in this section. In principle, we always use the
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Table 1. Comparison of the ‘standard’ (column 2) and ‘new’ (column 3) SPH implementations in the GADGET code. Furthermore, we give some
references (column 4) for extended descriptions and discussions.

Standard New

Density estimator Traditional Bias-corrected Dehnen & Aly (2012)
Kernel function Cubic spline Wendland C4 Dehnen & Aly (2012)
Neighbours (3D) 64 200 Dehnen & Aly (2012)

EoM Density-Entropy Density-Entropy Springel & Hernquist (2002)
Grad-h terms Yes Yes Springel & Hernquist (2002)

Velocity gradients Low-order High-order Price (2012a); Hu et al. (2014)
AV Standard (constant) Adaptive (locally) Dolag et al. (2005); Cullen & Dehnen (2010)
Balsara limiter Low-order High-order Balsara (1995); Cullen & Dehnen (2010); Price (2012a)

AC No Adaptive (locally) Wadsley et al. (2008); Price (2008)
Hydrostatic correction No Adaptive (locally) Price (2008); Valdarnini (2012)

Particle wake-up No Yes (fw = 3) Saitoh & Makino (2009); Pakmor (2010); Pakmor et al. (2012)

entire new scheme and we also employ the same set of all numer-
ical parameters throughout our entire simulation test suite. Thus,
unless otherwise stated, we do not tune individual standard tests
or astrophysical applications. However, if necessary we sometimes
switch off some of the modifications to analyse their individual and
isolated impact on several of the test problems.

2.2 Kernel functions and density estimate

Foremost, there is the question in a Lagrangian method how to derive
fluid field quantities from a given set of point masses. In particular,
the estimation of the gas density is crucial as many further equations
rely on it. We employ the standard estimator of SPH and calculate
the density ρ(xi) = ρi of an individual particle i at the position xi

by summing the contributions of Ni neighbouring particles j within
a smoothing radius h(xi) at a distance xij in a mass-weighted (mj)
and distance-weighted (Wij(xij, hi)) fashion

ρi =
∑

j

mjWij (xij , hi). (1)

Simultaneously, the smoothing length hi is a function of density

h(xi) = η

(
mi

ρi

)1/3

, (2)

where η defines the ratio of smoothing length to the mean distance
between particles. Equations (1) and (2) roughly ensure constant
mass resolution throughout the simulation and have to be solved
in parallel. This mimics the evolution of spheres of the same mass
4/3πh3

i ρi = Nimi but with varying number of neighbours. The
number of neighbours varies across space and time with an increase
or decrease of smoothing length and local quality of fluid sampling
by the point masses. The weighting function is commonly chosen
to decrease monotonically with distance, yield smooth derivatives,
is symmetric with respect to xij = xji and has a flat central portion. A
historical choice (Monaghan & Lattanzio 1985) of kernel function

Wij (xij , hi) = w(q)/h3
i , (3)

is the cubic B-spline function with q = xij/hi and

w(q) = 8

π

⎧⎪⎪⎨
⎪⎪⎩

1 − 6q2 + 6q3 0 ≤ q ≤ 1
2

2 (1 − q)3 1
2 ≤ q ≤ 1

0 1 ≤ q

, (4)

which we commonly employ with a choice of 64 neighbours in three
dimensions. However, this traditional kernel function is subject to
the pairing (or clumping) instability when the number of neighbours
is too large (see Price 2012a). An alternative choice to achieve better
numerical convergence is necessary and an entire new family of
kernels is needed. In a kernel stability analysis Dehnen & Aly (2012)
show that the Wendland kernel functions are a much better choice.
We choose the Wendland C4 (WC4) kernel with 200 neighbours
in three dimensions as our smoothing function without the pairing
instability problem. The functional form of the C4 is given by

w(q) = 495

32π
(1 − q)6

(
1 + 6q + 35

3
q2

)
. (5)

For values of q > 1, it is set to w(q) = 0. The Wendland functions
require similar computational effort as the cubic spline kernel but
nevertheless, the total computational time increases due to larger
number of neighbours. Therefore, we do not employ the higher order
C6 functions because of the required 295 neighbours. In summary,
the total computational cost of the density and hydrodynamical
force calculation increases by a factor of about 2 in comparison to a
cubic spline with 64 neighbours. However, a better estimate of the
kernel will result in a more accurate density estimate and improved
gradient estimators. These estimators are the cornerstones of the
SPH formalism and determine the accuracy and convergence rate
in all our test simulations.

2.3 Equation of motion

The EoM for a system of point masses are derived (see e.g. Price
2012a) from a discretized version of the fluid Lagrangian

L =
∑

i

mi

[
1

2
v2

i − ui

]
, (6)

where v denotes velocities and u internal energy of individual
particles. The Lagrangian nature of SPH, when complemented
with a symplectic time integration scheme, automatically conserves
mass, momentum, angular momentum, energy and entropy. We use
the standard kick-drift-kick Leapfrog time integration of GADGET

(Springel 2005). The EoM then follows from the principle of least
action, where the spatial derivative of internal energy comes (if
constant entropy is assumed) from the first law of thermodynamics
dU = −P dV. We choose a volume element depending on density
(V = m/ρ) and an adiabatic equation of state for the pressure P =
Aργ , which is defined individually for every particle. We integrate
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entropy A as the thermodynamical variable of choice and thus em-
ploy what is commonly called ‘density-entropy’ SPH.

The EoM in the ‘density-entropy’ (for a derivation see Springel &
Hernquist 2002) for the hydrodynamical force part of an individual
particle reads

dvi

dt

∣∣∣∣
hyd

= −
∑

j

mj

[
f co

i

Pi

ρ2
i

∇iWij (hi) + f co
j

Pj

ρ2
j

∇iWij (hj )

]
,

(7)

where the factor fco is a correction factor, which accounts for the
mutual co-dependence of smoothing length h(ρ) and density ρ(h)
and their corresponding derivatives. Its functional form is given by

f co
i =

[
1 + hi

3ρi

∂ρi

∂hi

]−1

. (8)

Equation (7) leads to a non-vanishing force at contact discontinuities
even when pressure is constant. This is the artificial ‘surface ten-
sion’ of SPH, which suppresses particle movement across contact
discontinuities. In the following sections, we present our equations
in notation of internal energy u, which is related to the entropic
function A = (γ − 1)u/ργ − 1.

2.4 Artificial viscosity

2.4.1 Smoothing of jumps

By construction, SPH solves the ideal Euler equation and no dissi-
pative terms are included but those are necessary to describe dis-
continuities correctly. In highly dynamical regions (e.g. in shocks)
fast particles commonly penetrate into regions of resting particles
causing unwanted particle disorder and oscillations in the sampling
of the fluid. However, SPH already contains an intrinsic remeshing
force but to re-establish particle order and capture shocks properly
an additional dissipative term in velocity is needed. This AV aims
to remove post-shock oscillations and noise and helps to smooth
the velocity field (see Monaghan & Gingold 1983). We include AV
in an energy conserving way with a contribution to the EoM of the
form

dvi

dt

∣∣∣∣
visc

= 1

2

∑
j

mj

ρij

(
vj − vi

)
αv

ij f
shear
ij v

sig,v
ij F ij , (9)

and with a contribution to the energy equation of the form

dui

dt

∣∣∣∣
visc

= −1

2

∑
j

mj

ρij

(
vj − vi

)2
αv

ij f
shear
ij v

sig,v
ij F ij , (10)

where the symmetrized variables represent ρ ij = (ρ i + ρ j)/2 for the
density, αv

ij = (αv
i + αv

j )/2 as a numerical coefficient to include AV
(see below) and f shear

ij = (f shear
i + f shear

j )/2 as the Balsara (1995)
shear flow limiter (see Section 2.3.2 below), which aims to ensure
the application of AV only in strong shocks (high-velocity diver-
gence) and not in rotating or shearing flows (high-velocity curl). Fur-
thermore, in the above equation F ij = (Fij (hi) + Fij (hj ))/2 is the
symmetrized scalar part of the kernel gradient terms ∇iWij (hi) =
Fij r ij /rij , which are used to linearly interpolate the second-order
Laplacian derivative in the velocity field diffusion equation. The
pairwise signal velocity v

sig,v
ij (first introduced by Monaghan 1997,

and already used in GADGET-2) determines the strength of AV and
directly includes a quantitative measure of particle disorder

v
sig,v
ij = cs

i + cs
j − βμij , (11)

where cs is the sound speed of the particles and μij = vij · xij /xij

with a commonly chosen pre-factor of β = 3. AV is only applied
between approaching pairs of particles (i.e. μij < 0) and otherwise
switched off. The local signal velocity v

sig
i (also used by the time-

step criterion, see Section 2.6) represents the maximum value of
v

sig,v
ij between all particle pairs ij within the entire smoothing sphere

of particle i.
The calculation of the viscosity coefficient αv

i is based on an
approach developed by Cullen & Dehnen (2010) but modified for
more efficient computation as follows. The presence of a shock
is indicated via computation of velocity divergence contributions
across the entire smoothing length by

Ri = 1

ρi

∑
j

sign(∇ · v)jmjWij , (12)

where a shock corresponds to Ri ≈ −1. In principle, an accurate cal-
culation of Ri for every particle requires the previous computation of
(∇ · v)i for every particle. Therefore, an extra SPH summation loop
added between the calculation of density (where velocity divergence
can also be calculated) and hydro forces would be necessary. For
computational reasons, we use the velocity divergence calculated
in the previous time-step. Furthermore, a convergent flow is also
indicated by a high-velocity divergence but that condition does not
distinguish between pre-shock and post-shock regions. Therefore,
we employ the time derivative of velocity divergence to determine
a directional shock indicator

Ai = ξi max(0, −(∇̇ · v)i), (13)

which is able to distinguish between pre-shock and post-shock re-
gions. We calculate (∇̇ · v)i via interpolation between the current
and the previous time-step (as suggested by Cullen & Dehnen 2010)
in the time interval 
ti.

Subsequently, we use the shock indicator Ri to determine the ratio
ξ i of strength of shock and strength of shear in quadratic form via

ξi = |2(1 − Ri)4(∇ · v)i |2
|2(1 − Ri)4(∇ · v)i |2 + |∇ × v|2i

, (14)

which is proposed by Cullen & Dehnen (2010) as an additional
limiting factor for AV in equation (13) and was experimentally
determined. Now, for every particle we can define and set the target
value αloc,v

i of AV with the help of the directional shock indicator
to

αloc,v
i = αmax

h2
i Ai

h2
i Ai + (vsig

i )2
. (15)

In the case, where the viscosity coefficient αv
i is smaller than αloc,v

i ,
we set the coefficient to αloc,v

i . Otherwise, we let it decay with time
according to

α̇v
i = (αloc,v

i − αv
i )

v
sig
i

�hi

, (16)

which we integrate in time together with the hydrodynamical quan-
tities. The constant � specifies the decay length and in our test
problems we find a numerical value of � = 4.0 to give reasonable
results.

2.4.2 Gradient estimators

We use the Balsara (1995) form of the shear viscosity limiter

f shear
i = |∇ · v|i

|∇ · v|i + |∇ × v|i + σi

, (17)
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with σi = 0.0001cs
i /hi for numerical stability reasons. At this point,

the question arises how to calculate the divergence and vorticity. The
common curl estimator of SPH reads

(∇ × v)i = − 1

ρi

∑
j

mj

(
vj − vi

) × ∇iWij , (18)

which takes the lowest order error term into account. Since higher
order error terms are neglected, this formation performs very poorly
in the regime of strong shear flows. Therefore, we resort to a higher
order calculation scheme of the velocity gradient matrix (see sim-
ilar approaches by Cullen & Dehnen 2010; Price 2012a; Hu et al.
2014). We follow the approach presented in Price (2012a) for the
computation of the gradient matrix. We expand vj for every vector
component k in a Taylor-series around i with

vk
j = vk

i + (∂δv
k
i )(xj − xi)

δ + O(h2). (19)

Inserting equation (19) into equation (18) yields an easy solution
for the linear term ∂δv

k
i and the velocity gradient matrix by solving

the following system of equations:

χαβ =
∑

j

mj (xj − xi)
α∇β

i Wij , (20)

χαβ ∂vk
i

∂xα
=

∑
j

mj (vj − vi)
k∇β

i Wij , (21)

which requires a matrix inversion for χαβ . Conveniently, the esti-
mator is also independent of density and thus, can be calculated in
the same computational loop along with densities. Subsequently,
the updated estimates of velocity divergence and curl are calculated
directly from the full velocity gradient matrix via

(∇ · v)i = ∂vα
i

∂xα
, (22)

(∇ × v)δi = εαβδ

∂v
β
i

∂xα
. (23)

In our test problems, we find the low-order estimator of veloc-
ity divergence to give already satisfying results (see also appendix
A2 in Schaye et al. 2015). In contrast, the low-order estimator of
velocity curl performs very poorly and we obtain significantly im-
proved results with the high-order curl estimator of equation (23).
The high-order estimators are not restricted to the AV scheme but
they also enter various other modules of the code, where their pre-
cise calculation is required. For example, this additionally greatly
improves the approximation of fluid vorticity written into the sim-
ulation snapshots.

2.5 Artificial conductivity with gravity correction

2.5.1 Smoothing of jumps

We move on to address the mixing problem in SPH by introduc-
ing a kernel-scale exchange term for internal energy transport. We
include AC for purely numerical reasons to treat discontinuities in
the internal energy (similar to the capturing of velocity jumps by
AV), which arise from our ‘density-entropy’ formulation of SPH.
We note that a ‘pressure-entropy’ formulation of the EoM is also
able to address the mixing problem but it also requires the presence
of AC in order to smooth noise in internal energy behind shocks
(Hopkins 2013; Hu et al. 2014). Thus, in either flavour of SPH

the inclusion of AC is recommended and many different formula-
tions of the AC diffusion equation have been investigated so far.
Although their precise details vary across the literature, they all en-
sure conservation of internal energy within the kernel. Price (2008),
Price (2012a) and Valdarnini (2012) propose the diffusion of inter-
nal energy, while Read & Hayfield (2012) propose the diffusion of
entropy. Wadsley et al. (2008) propose a first mixing formulation
to resolve the differences in entropy profiles within cosmological
comparison simulations (Frenk et al. 1999) between grid and SPH
codes. The diffusion coefficient is approximately proportional to
αcvsig, cxij and the numerical coefficient αc is commonly treated as
constant through space and time. We adapt the formulation of a
spatially varying coefficient of Tricco & Price (2013) and addition-
ally calculate a limiter depending on the local hydrodynamical and
gravitational states. We compute the gradient of internal energy as

(∇u)i = 1

ρi

∑
j

mj (uj − ui)∇iWij (24)

and approximate the AC coefficient

αc
i = hi

3

|∇u|i
|ui | (25)

as a measure of noise of internal energy sampling on kernel scale.
The time evolution (i.e. spatially varying SPH discretization of the
second-order diffusion equation) of the internal energy for each
particle and its neighbours is then given by

dui

dt

∣∣∣∣
cond

=
∑

j

mj

ρij

(uj − ui)α
c
ij v

sig,c
ij F ij , (26)

where we employ the choice of Price (2008) for signal velocity
depending on the pressure gradient of the form

v
sig,c
ij =

√
|Pi − Pj |

ρij

(27)

and αc
ij = (αc

i + αc
j )/2 is the symmetrized conduction coefficient,

which are individually limited to the interval [0, 1]. In the literature
several other forms of AC (see e.g. Wadsley et al. 2008; Valdarnini
2012) or approaches to the mixing problem (see e.g. Hopkins 2013)
have been proposed.

2.5.2 Gravity limiter

We note that the amount of AC applied depends on the gradients of
internal energy and of pressure. In the case that the thermal pres-
sure gradient is determined by gravitational forces (i.e. hydrostatic
equilibrium), this method would incorrectly lead to unwanted con-
duction. In the following, we determine the contribution of hydro-
static equilibrium to the total thermal pressure gradient and present
a method to limit the amount of conduction. First, for every indi-
vidual active particle, we project the gravitational force Fg on to
the hydrodynamical force Fh

i and calculate the partial force Fp
i of

Fh
i , which is balanced by Fg

i to

Fp
i =

(
Fg

i · Fh
i

)
|Fh

i |2
Fh

i . (28)

The sign of Fp
i depends on the spatial orientation of the force

vectors. Secondly, we subtract/add the partial force Fp
i from/to

the hydrodynamical force Fh
i and obtain Fc

i , which we call the
gravitationally adjusted hydrodynamical force

Fc
i = Fh

i + Fp
i (29)
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and which we use to determine a limitation factor δc
i for AC

δc
i =

((
Fc

i · Fh
i

)
|Fh

i |2
)q

. (30)

The limiter ensures that AC is only applied to the part of Fh
i which

is not balanced by Fg
i . The exponent q represents a scaling for the

aggressivity of the gravity correction. We limit our correction fac-
tor to the interval [0, 1] and directly multiply it on to the individual
AC coefficients αc

i . The limiter performs only as well as the hy-
drodynamical scheme is able to resolve hydrostatic equilibrium (in
the ideal case the angle between force vectors is 180◦). However,
in SPH simulations small-scale noise is present at all times within
the kernel and thus also in the force vector angles. The exponent
q (applied after the boundary verification) can then be understood
to account for the noise in the particle distribution and mimics an
opening angle of force vectors. After extensive studies and per-
forming a variety of test problems, we settle with q = 5. The limiter
returns zero in the case no hydrodynamical forces are present and
one in the case, where no gravitational forces are present. We are
aware that in the presence of strong pressure gradients and rota-
tional forces our approach only marginally limits the amount of
AC applied. However, we did not encounter major problems in our
simulations performed with the ‘new’ scheme so far. Therefore, we
assume this issue to be not too important at the present state.

2.6 Particle wake-up and time-step limiter

GADGET employs individual time-steps for all of the particles to
increase computational efficiency. Thus, the particle population is
split into a set of active particles, whose hydrodynamical properties
are integrated in the current time-step and a set of inactive parti-
cles, which reside on larger time-steps. These individual time-steps
are computed from the local thermodynamical properties of each
particle. However, the splitting between active and inactive compu-
tational regions creates problems, where both sets of particles are
overlapping. In the case of a rapid gain in velocity or entropy an
active particle can penetrate into a region of inactive particles. The
inactive particles do not notice the sudden presence of the highly dy-
namical particle and therefore large gradients in the time-steps and
unphysical results can occur. As a treatment we adopt a time-step
limiting particle wake-up scheme as proposed and implemented in
the GADGET-3 code by Pakmor (2010) and Pakmor et al. (2012) with
the help of K. Dolag. It is similar to the time-step limiting scheme
described by Durier & Dalla Vecchia (2012) and can be considered
an extension of the Saitoh & Makino (2009) mechanism. Further-
more, our limiter compares signal velocities instead of time-steps
and accounts for incorrect extrapolations. For every active parti-
cle, in every time-step, the individual time-steps themselves are
re-computed according to


ti = Chi

v
sig
i

, (31)

where C is the Courant factor and v
sig
i the maximum signal velocity

(see Section 2.4). For the calculation of the time-step the maximum
of the signal velocity computed between the active particle i and
all its neighbour particles j within the entire kernel is used. GADGET

employs a check during the hydrodynamical force computation for
large differences in signal velocities (see equation 11) within the
kernel by evaluating

v
sig
ij > fwv

sig
j , (32)

Figure 1. Sod shock tube. We show the spatial distribution of particles
(every 10th particle is plotted) for density, thermal pressure, total energy
and velocities at time t = 5.0. Both SPH schemes capture the shock well
but with differences as follows. The ‘new’ scheme converges better in the
density estimate and the presence of AC nearly removes the pressure blip at
the contact discontinuity.

with a tolerance factor fw corresponding to a wake-up triggering
criterion, which captures sudden changes in the pairwise signal
velocity. From our hydrodynamical standard tests, we find fw = 3
to give reasonable results. Additionally, the fluid quantities of the
recently woken-up particles could have already been predicted half
a time-step into the future. Therefore, the incorrect extrapolation is
removed and the contribution from the real time-step added. These
corrections are performed for all particles for which the time-steps
are adapted.

3 H Y D RO DY NA M I C A L T E S T S W I T H O U T
G R AV I T Y

We evaluate the performance and accuracy of the two different SPH
implementations with a first set of standard problems. These first
test problems are purely hydrodynamical and do not include gravity
or more advanced physics, yet. Throughout all the test problems,
we use an adiabatic index of γ = 5/3, the same set of numerical
parameters (see Section 2) and we do not specifically tune individual
test problems.

3.1 Sod shock tube

We consider the Sod shock tube problem (Sod 1978) to study the
SPH behaviour in a simple weak shock test. We set up 630 000 parti-
cles of equal masses using a relaxed glass file in a three-dimensional
periodic box with dimensions 
x = 140, 
y = 1 and 
z = 1. On
the left-half side of the computational domain (x < 70), we initial-
ize 560 000 particles with a density of ρL = 1.0 and a pressure of
PL = 1.0. On the right-half side of the computational domain (x >

70), we initialize 70 000 particles with a density of ρR = 0.125 and
a pressure of PR = 0.1.

Fig. 1 shows the results of the test problem at time t = 5.0. In gen-
eral, both SPH schemes agree fairly well with a reference solution
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Figure 2. Sod shock tube. We show a zoom-in on the pressure blip (see
Fig. 1, upper-right panel) at time t = 5.0. Only a small residual of surface
tension is left.

Figure 3. Sod shock tube. We show a zoom-in on velocity in x-direction
(see Fig. 1, bottom-right panel) at time t = 5.0. Besides some post-shock
ringing, the post-shock noise is smaller with the ‘new’ scheme.

(green line) obtained with the ATHENA code (Stone et al. 2008) but we
note the following differences. In the ‘standard’ scheme (blue dots),
the discontinuity in internal energy results in a ‘blip’ of pressure
(see Fig. 2) and energy, which corresponds to the artificial spurious
surface tension of SPH. The issue of the ‘blip’ has been discussed
for a long time (see e.g. Monaghan 1992). In the ‘new’ scheme (red
dots), AC promotes mixing, resolves the discontinuity, regularizes
the pressure and provides a treatment of the ‘blip’. A closer look at
individual particles (see Fig. 3) shows that the pure noise in velocity
of particles behind the shock front is lower, which is a direct result
of the improved prescription of AV. However, reducing the viscosity
gives rise to post-shock ringing. Additionally, the change of kernel
function improves the sampling quality of the fluid and yields a
smoother estimation of density. At last, the time-step limiter is of
little importance due to the weak shock in this test. However, as
seen in Fig. 2 the ‘blip’ is not completely removed and this is where
some residual surface tension shows up.

3.2 Sedov blast

We consider the Sedov blast problem (Sedov 1959) to study the
SPH behaviour in a simple ultrasonic strong shock test. We set up
1303 particles of equal masses using a relaxed glass file in a three-
dimensional periodic box with dimensions 
x = 
y = 
z = 6 kpc.
In the entire computational domain, we initialize the particles with
a density of 1.24 × 106 M� kpc−3 and one Kelvin as temperature.
At the centre of the box, we point-like distribute the energy E =
6.78 × 1053 erg to mimic a supernova explosion among the nearest
102 particles.

Fig. 4 shows thin slices through the centre of the simulation box
and Fig. 5 the corresponding particle distribution at time t = 0.03.
Furthermore, we perform the ‘standard’ scheme test also with the
time-step limiter (fw = 8000) because of the very strong shock
(Mach � 100) of the blast and otherwise any comparison will
fail. Without the limiter, shocked particles penetrate into quiescent
regions causing a highly distorted fluid sampling, which results
in an incorrect solution leading to an incorrect propagation of the
shock front (see discussions in Saitoh & Makino 2009; Durier &

Figure 4. Sedov blast wave. We show thin slices through the centre of the
computational volume at time t = 0.03 of the test performed with the ‘new’
scheme. The shock front is clearly visible in the gas density (left-hand panel)
as well as the temperature (right-hand panel).

Figure 5. Sedov blast wave. We show the radial distribution of particles
(every 5th particle is plotted) at time t = 0.03 with a time-step limiting
criterion of fw = 3. We have performed the ‘standard’ run with a time-
step limiting criterion of fw = 8000 (green lines, otherwise no meaningful
comparison can be performed) and also fw = 3. The classic ‘standard’
scheme (green lines) fails to capture the shock, while the ‘new’ scheme
(red lines) captures the position and evolution of the shock front much
better compared to the analytical solution (black lines). This test shows the
importance of the time-step limiter.

Dalla Vecchia 2012) and corresponding smoothing. The entire ‘new
scheme’ reproduces the analytical solution (black line) very well,
with the ‘standard’ run (green dots) totally failing, and the ‘new’
run (red dots) capturing the position, density and temperature of
the shock fairly well. In addition, we show a partially improved
‘standard’ run (blue dots), where we enabled the time-step limiter
but nothing else. This run also yields reasonable good results in this
test, but as we see later comes short in other tests. We see that the
‘new’ scheme yields a smooth distribution of particles within the
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Figure 6. Keplerian Ring. We show the initial set-up (top-left panel) as
well as the results of three different AV methods. For a fair comparison,
we only vary the AV scheme and none of the other SPH modifications.
The importance of AV becomes clear as high amounts of viscosity lead to
numerical accretion of particles on to the central point mass. Because angular
momentum is conserved, the ring breaks up and an instability develops. With
a low-order Balsara limiter, neither the standard SPH viscosity (top-right
panel) nor the M&M viscosity (bottom-left panel) are able to preserve
the ring. The ‘new’ scheme (bottom-right panel), which has a the time-
dependent AV coupled with a high-order limiter, is able to preserve the ring
to even very late times.

central region and therefore a well-resolved, but smoothed due to
AC, temperature solution.

3.3 Keplerian ring

We consider the Keplerian ring problem (Cartwright, Stamatellos
& Whitworth 2009; Cullen & Dehnen 2010) to study the SPH
behaviour in a simple rotating and shearing test problem. We set up
20 000 particles of equal masses sampling a two-dimensional ring
with a Gaussian surface density profile with a peak at radius R =
15.0 kpc and a standard deviation of σ = 2.0 kpc. For numerical
reasons, we initialize the distribution in concentric shifted circles
and not in a random fashion (Cartwright et al. 2009). We set the
particles on Keplerian orbits around a central 109 M� point mass
with a rotation period of t = 2π. We choose the sound speed orders
of magnitudes smaller than the orbital velocity to ensure thermal
stability of the ring. In contrast to our common set of numerical
parameters, we start without a minimal value of AV because it
would immediately trigger instability. In the absence of AV the ring
should be stable.

Fig. 6 shows the results of the test problem at the times of onset
of runaway instability. We perform all test runs with the WC4
kernel in order to exclude possible effects caused by the smoothing
scale of kernel sizes and differential estimators. Due to the highly
subsonic nature and the absence of strong shocks, the impact of
AC and the time-step limiter is negligible. The initially stable ring
(top-left panel) evolves as follows for different implementations
of AV. In the ‘standard’ scheme (top-right panel), the ring is only
stable for about two dynamical times, before the instability has fully

developed and the ring breaks up. Also, the Balsara limiter does not
succeed in limiting AV because of the insufficient calculation of
vorticity. In the ‘M&M’ scheme (bottom left-hand panel), we use
the implementation of a low-viscosity scheme initially proposed by
Morris & Monaghan (1997) and implemented into GADGET by Dolag
et al. (2005). Their scheme uses a time-dependent evolution of
numerical AV coefficient αv

i to suppress AV in the absence of shocks
and manages to keep the ring stable for about seven dynamical times.
However, the M&M scheme requires a minimum value of AV and
also uses a low-order estimator for vorticity, which leads to the
ring break-up. At last, we show the results of the ‘new’ scheme
(bottom-right panel), which we used without a minimum value for
AV. This scheme uses a high-order estimator of velocity gradient
matrix, which results in a very accurate calculation of divergence
and vorticity. Therefore, also the computation of the Balsara shear
flow limiter is very accurate and suppresses AV completely within
the entire ring structure. We do not note an artificially induced
transport of angular momentum and orbital changes of test particles.
Consequently, the ring remains stable for many dynamical times and
the initial Gaussian surface density distribution is preserved until
we stopped the simulation.

3.4 Cold blob test

We consider the blob test (Agertz et al. 2007; Read et al. 2010)
set up with publicly available initial conditions1 to study the SPH
behaviour in a test problem with interacting gas phases and surfaces.
We initialize 9641 651 particles of equal masses using a relaxed
glass file in a three-dimensional periodic box with dimensions 
x
= 10, 
y = 10 and 
z = 30 in units of the cold cloud radius. A
cold cloud is centred at x, y, z = 5 and travels at a Mach number of
M = 2.7. The background medium is set-up 10 times less dense and
10 times hotter than the cloud. Spherical harmonics are used to seed
large-scale perturbations on to the surface of the cloud. Because of
the low Mach number shocks, we expect the time-step limiter to be
only of minor importance.

Fig. 7 shows thin slices through the density structure at various
times. In the ‘standard’ scheme, the cold gas cloud is prevented
from dissociating by the follow major effect (see also e.g. Agertz
et al. 2007). The presence of artificial surface tension confines the
blob of cold gas. This is clearly visible by the numerically induced
stretching of the cloud. Cold material, which should have been
mixed into the ambient hot medium is confined within an elongated
structure. In the ‘new’ scheme, the presence of AC promotes the
mixing with external ambient medium. We also note that the ‘new’
scheme resolves different shock structures propagating through the
box both more accurately and smoothly.

Fig. 8 illustrates the dissipation of the gas cloud by tracking the
time evolution of cold blob mass. We associate (see also Agertz et al.
2007) particles with the cold cloud with a temperature criterion of
T < 0.9 · Text (in contrast to the external ambient medium) and a
density criterion of ρ > 0.64 · ρcl (in contrast to the initial density of
the cloud). In the ‘standard’ scheme (blue line), only half of the cold
gas mass is mixed into the hot ambient medium over five dynamical
times. The effects of the improved AV and WC4 kernel (green line)
are negligible. The major impact and contribution to cloud dissoci-
ation is made by AC (pink line) and the corresponding introduced
mixing process. The results are close to a test run performed with
the ENZO (Bryan et al. 2014) code in a comparable set-up, which we

1 http://www.astrosim.net/code/doku.php
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Figure 7. Blob test. We show thin slices of gas density through the centre of the computational domain at times t = 0.0, 3.0, 6.0 and 10.0. In the ‘standard’
scheme, numerical surface tension prevents mixing between cold and hot phases leading to an artificial stretching of the cloud and an unphysical solution. In
the ‘new’ scheme, AC helps to promote cloud dissociation; however, some residual surface tension remains left. Furthermore, the shock structures throughout
the box are more defined and better resolved.

Figure 8. Blob test. We show the fraction of cold gas as a function of time
for four different SPH schemes. In the ‘standard’ scheme, numerical surface
tension prevents mixing between the cold and hot phases. The importance
of AC becomes clear as it promotes mixing between gas phases, which
allows a dissociation of the cloud. Only some residual surface tension is
left. Comparing to a run performed with the ENZO grid code, we find our AC
scheme to model mixing in a conservative way.

took from Hopkins (2013). However, some residual surface tension
remains.

3.5 Kelvin–Helmholtz instability

We consider the Kelvin–Helmholtz instability (Agertz et al. 2007;
Read et al. 2010) from publicly available initial conditions 1 to
study the SPH behaviour in a simple shearing instability test. We
set up 1548 288 particles of equal masses using a cubic lattice in a
three-dimensional periodic box with dimensions 
x = 256 = 
y
= 256 and 
z = 16 kpc, which is centred around (0, 0, 0). In the
central half of the box (|y| < 64), we initialize 512 000 particles
with a density of ρ1 = 6.26 · 103 M� kpc−3, temperature of T1 =
2.5 · 106 K and a velocity in x-direction of v1 = −40 km s−1. In
the outer half of the box (|y| > 64), we initialize 1036 288 particles
with a density of ρ2 = 3.13 · 102 M� kpc−3, temperature of T2 =
5.0 · 106 K and a velocity in x-direction of v2 = 40 km s−1. To
trigger the instability, we perturb the velocity in y-direction with
a mode of wavelength 128 kpc and amplitude of 4 km s−1 at the
boundary layer that is exponentially damped towards the upper and
lower edge of the box.

Fig. 9 shows thin projections through the specific entropy struc-
ture of the test problem at various times. In the ‘standard’ scheme,
the fluid evolves in a laminar fashion and the growth of perturba-
tions is totally suppressed by the artificial surface tension confining
the central gas stream and large amounts of AV damping veloc-
ity perturbations (see also e.g. Agertz et al. 2007; Price 2008). In
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Figure 9. Kelvin–Helmholtz instability. We show thin projections of specific entropy through the centre of the computational domain at times t = 3.0 and 6.0
(dynamical time-scale tKH ≈ 3.4). In the ‘standard’ scheme, numerical surface tension as well as too much AV prevent the instability to develop and lead to
an unphysical laminar behaviour of the fluid. In the ‘new’ scheme, our formulations of AV and AC promote the formation of roll-ups and onset of instability,
while at late stages diffusion is dominating.

the ‘new’ scheme, the high-order Balsara shear limiter success-
fully limits AV and allows large-scale perturbations to develop two
prominent roll-ups. Additionally, AC nearly removes the artificial
surface tension between the two gas phases and promotes mixing
within the roll-ups. The entire test set-up does not evolve completely
symmetric because of small secondary perturbations caused by the
initial set-up on a cubic lattice. Most importantly, the high-order AV
and AC prove crucial for this test problem, while the WC4 kernel
and time-step limiter are of less importance. At the late stages, in
this set-up the ‘new’ scheme is dominated by diffusion.

3.6 Decaying subsonic turbulence

Recent comparisons of standard SPH implementations with static
and moving mesh grid codes have sparked a debate about the ca-
pabilities of SPH to model subsonic turbulences (see e.g. Bauer &
Springel 2012; Price 2012b; Hopkins 2013, 2015). We study the be-
haviour of our ‘new’ scheme in idealized simulations of decaying
subsonic turbulence. In particular, we are interested in the effec-
tive viscosity of the two schemes and the behaviour of the ‘SPH
noise’ under conditions appropriate to galaxy formation and cluster
simulations, i.e. non-isothermal, decaying motions from solenoidal
and compressive modes. As most baryons on cosmological scales
are in weakly collisional plasmas, numerical models should aim to
minimize viscosity where possible (see e.g. Brunetti & Lazarian
2007).

3.6.1 Grid and particle conversion procedures

We set up 5123 particles of equal masses within a periodic box of
side length 3 Mpc h−1 using carefully relaxed SPH glass files to
minimize spurious initial kinetic energy. Subsequently, we define
a velocity field on a grid of the same resolution in k-space by
sampling a spectral distribution using the Box–Mueller method.
The velocity field is transformed back to real-space using a fast

Fourier transformation (FFT), normalized such that the average
velocity is of the desired Mach number. The velocities from the
grid are transferred to the particle distribution using the nearest grid
point (NGP) sampling kernel.

To assess the impact of random motions near the resolution scale,
we need to measure the velocity power spectrum within the SPH
kernel. However, the accurate estimation of the velocity power spec-
trum of a particle distribution close to the Nyqvist frequency is
non-trivial, because of aliasing of the velocity power by the binning
kernel (see discussions in Jing 2005; Cui et al. 2008; Jasche, Ki-
taura & Ensslin 2009). This can be compared to a problem in signal
processing, where SPH represents an analogue signal, a grid and a
digital signal representation of it. Aliasing is strongest at the small-
est scales/largest modes, where the velocity power on the particles
is modified by the shape of the binning kernel in configuration-
space. To understand this effect and compare binning kernels, we
take initial conditions with a full Kolmogorov power spectrum (Pk

∝ k−11/3) without performing a simulation and directly bin the ve-
locity back to a grid using different kernels. After a forward FFT,
we radially average the velocity power in k-space in 32 logarithmic
bins.

Fig. 10 shows the resulting power-spectra where the black line
represents the original power spectrum. We show the kernels: NGP
(red line), Cloud in Cell (CIC, green line), Triangular Shaped Cloud
(TSC, violet line), Daubechies scaling function of 20th order (D20,
orange line), and the WC4 SPH kernel with 200 neighbours (SPH,
brown line) (Hockney & Eastwood 1988; Daubechies 1992; Dehnen
& Aly 2012). We also show the NGP with two times oversam-
pling (blue line), which was used in Bauer & Springel (2012). As
vertical lines, we show the Nyqvist frequency kNyq = Nkmin, the
WC4 smoothing scale kσ and the WC4 kernel compact support
khsml = π/hsml (Dehnen & Aly 2012).

During the binning process, the SPH kernel function conserves
density to machine precision but not energy, i.e. binning with
the SPH kernel is a diffusive process. The other kernels behave
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Figure 10. Comparison of different particle to grid binning methods acting
on the same particle distribution sampling a Kolmogorov velocity power
spectrum in three dimensions (black line). We show the NGP kernel (red
line), the twice oversampled NGP (blue line), the CIC (green line), the
TSC (violet line), the D20 (orange line) and the SPH WC4 (brown line).
The vertical lines indicate the wave numbers corresponding to the Nyqvist
frequency (solid line), the WC4 compact support (dashed line) and the WC4
smoothing scale (dotted line).

opposite, they conserve mass, scalar velocity and energy to less
than 1 per cent but not SPH density and volume. Fig. 10 clearly
shows that the D20 wavelet kernel minimizes aliasing for suffi-
ciently homogeneous particle distributions (Cui et al. 2008). Our
comparison also resolves the differences found in Bauer & Springel
(2012) and Price (2012b), who use the twice oversampled NGP ker-
nel and the standard SPH kernel, respectively. Prior studies based
on the NGP kernel binning overestimated the SPH noise, while
SPH kernel based binning suppressed the real noise by aliasing. We
conclude that all kernels except the D20 show substantial aliasing
and it seems hard to draw definitive conclusions from simulation
results under this condition. Thus we make it our fiducial choice
for this study. We note that in the presence of strong gradients in
density the SPH kernel remains the only viable choice to obtain
binned quantities, because it is the only kernel in our comparison
that guarantees a non-negative non-zero density in the entire sim-
ulation at all grid resolutions. This works reasonably well for a
physical interpretation of velocity power-spectra, because motions

below the SPH smoothing scale are caused by numerical effects
(Price 2012b).

3.6.2 Spectral evolution of turbulence

To compare the ‘standard’ and the ‘new’ schemes we consider de-
caying turbulence within a periodic box. We seed compressive and
solenoidal modes in the range of k ∈ [1.6, 3.1], to obtain initial con-
ditions appropriate for the galaxy and cluster environment, where
turbulence is injected by merger infall on the scale of the halo core
radius. We normalize the velocity fluctuations in the box such that
the average velocity equals a Mach number of M = 0.1 and we do
not time-average spectra.

Fig. 11 (left-hand and middle panels) shows the time evolution of
velocity power-spectra for the ‘standard’ scheme (left-hand panel)
and the ‘new’ scheme (middle panel). Here, we also show the scale
of the SPH kernel compact support (black vertical line) and the
kernel smoothing scale (dotted vertical line). In-line with previous
studies (Bauer & Springel 2012, their fig. 12), the ‘standard’ scheme
does not develop a turbulent cascade and damps kinetic energy very
quickly. Our ‘new’ scheme develops a cascade at large scales (small
k) but then shows a depression of kinetic energy close to the kernel
scale. This, again, is in-line with prior studies (Hopkins 2013). The
damping of the spectrum at the later times appears self-similar, i.e.
the shape of the spectrum does not change as energy decreases.
Inside the kernel the typical build-up of thermal motions around the
smoothing scale kσ can be observed, but scales outside the kernel
are not affected.

In order to understand if the cause of the velocity depression
at k ≈ 10 is caused by the formulation of AV, we perform a test-
run without any viscosity (Fig. 11, right-hand panel). Throughout
the whole evolution, the spectrum at the smallest k follows the
Kolmogorov scaling, as expected. Once the turbulent cascade is
established, the spectrum turns over at increasingly smaller scales,
which is equivalent to an isotropization of kinetic energy inside
the kernel and subsequent filling of larger scales with isotropic
motions. This follows from the fact that SPH particles are subject
to the pair-wise repulsive force (Price 2012a), and hence behave
like a thermal gas below the kernel scale. Eventually, such a system
will show a flat power spectrum as expected from the second law of
thermodynamics. In our simulation, we also observe the depression
outside the smoothing scale, which seems to be an intrinsic feature

Figure 11. Decaying subsonic turbulence. We show the build-up and decay of velocity power spectra for different schemes. The colours illustrate the time
evolution of the spectra (sound-crossing time of about ts = 7.0. We initially distribute energy on the largest modes, which then develops a spectral distribution.
In the ‘standard’ scheme (left-hand panel) turbulent motions are almost completely suppressed by destructive impact of AV. In the ‘new’ scheme (middle panel)
turbulent motions develop and a turbulent cascade is built. The diffusive character of AV is significantly changed and the velocity field as well as the kinetic
energy are preserved. The spectra are then compared to a simulation without viscosity (right-hand panel).
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of SPH related to an energy transfer from outside the kernel to
smaller scales, and not related to our formulation of AV.

In our ‘new’ scheme including AV, thermal motions are well
controlled inside the kernel scale, commonly referred to as ‘kernel
noise’. We argue that these motions are not spurious, because no
additional energy is retained in them, as SPH is fully conservative
and the spectrum decays roughly in a self-similar manner. If we
define the kernel smoothing scale (kσ ) as the dissipation scale in-
trinsic to SPH, the ‘new’ scheme does not show a bottle-neck effect
as found in grid codes at adjacent larger scales but a depression,

roughly in the same range in k. This is in line with the results
shown by Hopkins (2015), whose code uses a Riemann solver to
formulate noise-free AV on scales of the interparticle separation to
obtain grid-code behaviour. We note that the difference in dissipa-
tion scale (dmin versus σ kernel) translates into more resolution ele-
ments required by SPH compared to Eulerian methods, i.e. slower
convergence.

Fig. 12 shows thin slices through the centre of the simulation
box after one sound-crossing time. We visualize gas density (left-
hand panel) and vorticity (right-hand panel). It can be clearly seen

Figure 12. Decaying subsonic turbulence. We show thin slices through the centre of the simulation box after one sound-crossing time for both schemes.
The panels correspond to gas density (left-hand panel) and vorticity (right-hand panel). The velocity field shows well developed turbulence consisting of
compressive and shearing motions. The ‘new’ scheme is able to more accurately compute vorticity and suppress AV with the high-order Balsara limiter.
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Figure 13. Decaying subsonic turbulence. We show the total kinetic energy
in the simulation box over time.

that our ‘new’ scheme resolves compressive and shearing velocity
motions better than the ‘standard’ scheme. The high-order deriva-
tives of velocity lead to a more accurate estimation of vorticity
and thus, limit the impact of AV and preserve kinetic energy and
turbulent motions. Furthermore, the difference in AV and velocity
dissipation between the two schemes becomes strikingly evident
in the time evolution of kinetic energy (Fig. 13). The ‘standard’
scheme dissipates 90 per cent of the kinetic energy budget within
four sound-crossing times, while the ‘new’ scheme preserves energy
better by a factor of 5.

We conclude that our code performs comparably to modern im-
plementations of SPH (Price 2012a; Hopkins 2013), even in the
case of non-isothermal compressive and solenoidal decaying tur-
bulence found in cosmological simulations. We show that the dis-
agreement between Bauer & Springel (2012) and Price (2012a) is
largely caused by technical differences, to solve it we propose a
solution based on the D20 binning kernel. We also show that the
downturn in the velocity power spectrum is not caused by the AV
implementation.

4 H Y D RO DY NA M I C A L T E S T S W I T H G R AV I T Y

We continue to evaluate the performance and accuracy of the two
different SPH implementations with a second set of standard prob-
lems. These second tests include hydrodynamical as well as grav-
itational forces and also take a cosmological time integration into
account.

4.1 Hydrostatic sphere

We consider a sphere in hydrostatic equilibrium to study the SPH
behaviour in combination with gravity in an ideally stable system.
We set up 88 088 dark matter particles with individual masses of 2 ×
109 M� and 95 156 gas particles with individual masses of 4.75 ×
108 M�. The total mass of the sphere is 2.2 × 1014 M� and we use
vacuum boundary conditions and a gravitational softening length
of 12 kpc. We set up the initial equilibrium conditions following
Komatsu & Seljak (2001), as described in Viola et al. (2008). We
evolve the sphere adiabatically and do not include cooling or heating
mechanisms in this test.

Fig. 14 shows the results of the test problem at various times.
At first, the initial set-up (dotted lines) of the sphere is not yet in
hydrostatic equilibrium and requires some time to settle. Once hy-
drostatic equilibrium is reached around time t = 2.6 (dashed lines
for the ‘new’ scheme) all hydrodynamical schemes must preserve
the structure of the sphere and the radial profiles towards the final
simulation time t = 7.6. Between all schemes, the thermal pressure
profiles are indistinguishable balancing the gravitational pressure.
However, the composition of the thermal pressure P = (γ − 1)ρu
changes and the radial profiles for density ρ and internal energy
u change significantly. The ‘standard’ scheme (blue lines) reaches
the highest central density and also features lowest central internal
energy and entropy. However, the internal energy drops towards
the centre and no stable solution is reached at all. We suggest this
behaviour to be a joint impact of pairing instability caused by the
cubic spline kernel function and lack of internal energy mixing.
When introducing only AC, no gravitational limiter and no further
SPH developments (green lines), the results marginally improve. In-
ternal energy still drops towards the centre but this time because too
much AC was introduced. In principle, AC leads to entropy cores

Figure 14. Sphere in hydrostatic equilibrium. We show radial profiles of density (left-hand panel), internal energy (middle panel) and entropy (right-hand
panel) at three different times. At first, the initial conditions (dotted lines) must settle into hydrostatic equilibrium (dashed lines), which then remains stable
for an extended period of time (solid lines). The stability of the sphere is determined by the differences occurring between the settled (only shown for the
‘new’ scheme) and the evolved state (shown for all schemes). In the ‘standard’ scheme (blue lines), pairing instability caused by the cubic spline kernel and
lack of mixing lead to an incorrect central solution in density (too high) and internal energy (too low). The addition of the WC4 kernel (purple lines) prevents
the formation of particle clumps at the centre and AC promotes fluid mixing but full AC without gravity limiter (green lines) leads to a numerical transport
of internal energy outwards. The gravity limiter treats this behaviour (brown lines). The ‘new’ scheme (red lines) with WC4 and AC and gravity limiter
significantly improves the radial profiles in all physical quantities.
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but without the gravitational limiter overmixing occurs and inter-
nal energy is transported from the centre to the outskirts along the
pressure gradient. The addition of the gravitational limiter (brown
lines) improves the results significantly. The divergence of profiles
towards the centre is removed and a stable core of internal energy
and entropy is reached. Furthermore, no numerically induced trans-
port of heat takes place. Additionally, we perform a test run with
introducing only the WC4 kernel and no further SPH improvements
(purple lines). In this run, the central density is lower than in the
‘standard’ scheme, most probably because the clumping of parti-
cles in the centre and the occurrence of the pairing instability is
suppressed by the WC4 kernel in contrast to the run with the cubic
spline. This also leads to a plateau in internal energy in the cen-
tre of the sphere. At last, we show the results of the entire ‘new’
scheme (red lines) and find the results to remain stable with all
additional modifications to WC4 kernel, AV and time-step limiter.
We find this run to give the most stable radial profiles in time. This
test confirms the importance of kernel functions immune to pairing
instability and a proper implementation of AC and clearly shows
the effects of particle clumping and over and undermixing in grav-
itationally virialized systems, which are important in cosmological
simulations.

4.2 Evrard collapse

We consider the Evrard collapse (Evrard 1988) to study the SPH
behaviour in the presence of dynamically important gravitational
forces and collapse of gas. We initialize a sphere of gas with mass
M = 1, radius R = 1 and density profile of ρ ∼ r for r < R and use
vacuum boundary conditions and a gravitational softening length of
0.005. We do not use an external gravitational potential, dark matter
particles or radiative cooling and thus the cloud only self-gravitates
on the free-fall time-scale. The gas is initially at rest and the thermal
energy budget is orders of magnitude smaller than the gravitational
binding energy.

Fig. 15 shows the results of the test problem at time t = 0.8
We compare the SPH results to a reference solution similar to
Steinmetz & Mueller (1993). In density (left-hand panel) as well
as in velocity (middle panel) all schemes show similar trends. The
general structure of the test is well reproduced; however, the shock
front is slightly smoothed and broadened. The solution in density
deviates slightly from the reference solution at the centre. The most
striking differences can be seen in pre-shock entropy (right-hand

panel). The ‘new’ scheme (red line) produces higher levels of en-
tropy compared to the ‘standard’ scheme (blue line). We investigate
this trend and perform another test simulation (purple line) with the
‘new’ scheme but the cubic spline kernel. This run is closest to the
pre-shock reference solution.

4.3 Zel’dovich pancake

We consider the Zel’dovich pancake (Zel’dovich 1970) to study the
SPH behaviour for the cosmological time integration with Hub-
ble function H(t) instead of time t. This test describes the evo-
lution of a sinusoidal cosmological perturbation in an expanding
Einstein-de-Sitter universe. After an initial linear growth phase, the
one-dimensional perturbation collapses and several strong shocks
develop. Conveniently, the Zel’dovich pancake has an analytical
solution describing the evolution well up to the collapse, which we
used to create the initial conditions of the simulation. The comoving
position x of an initially unperturbated coordinate q at redshift z is
given by

x(q, z) = q − 1 + zc

1 + z

sin(kq)

k
, (33)

where k = 2π/λ is the wavenumber of the perturbation with a wave-
length of λ. We numerically invert equation (33) to obtain q(x). The
peculiar velocity corresponding to the initial displacement is given
by

vpec(x, z) = −H0
1 + zc

(1 + z)1/2

sin(kq)

k
, (34)

and the comoving density is given by

ρ(x, z) = ρ0

1 − 1+zc
1+z

cos(kq)
, (35)

where ρ0 is the critical density, H0 the present-day Hubble constant
and zc the redshift of collapse. Furthermore, the temperature evolves
adiabatically up to the collapse as

T (x, z) = Ti

[(
1 + z

1 + zi

)3
ρ(x, z)

ρ0

]2/3

, (36)

where zi is the initial redshift. We follow Bryan et al. (1995), Trac
& Pen (2004) and Springel (2010b) in our test set-up and choose λ

= 64 Mpc h−1, zc = 1, zi = 100 and Ti = 100 K. In a fully three-
dimensional box, we set up 2563 dark matter particles of equal
masses as well as 2563 gas particles of equal masses.

Figure 15. Evrard collapse. We show radial profiles of density, velocity and entropy at time t = 0.8 and compare to a reference piecewise parabolic grid
computation (green lines). In principle, all schemes (red, blue and purple lines) show similar characteristics, but they differ as follows. The pre-shock entropy
level is significantly higher in the ‘new’ scheme (red lines), which we attribute to the WC4 kernel with a larger smoothing size. A comparison run with the all
improvements, but no WC4 kernel (purple lines), shows a lower pre-shock entropy level.
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Figure 16. Zel’dovich pancake. We show the evolution of density contrast (left-hand column), temperature (middle column) and velocity (right-hand column).
We show the state of the pancake at an intermediate redshift z = 3.6, while it is still in the linear regime before the collapse and at the final redshift z = 0, when
it is evolved well into the non-linear regime. Both SPH schemes agree well with the analytical solution during the linear growth phase. At the final redshift, the
‘new’ scheme resolves well the density contrast and yields a broader shock and a slightly smoother velocity.

Fig. 16 shows the results of the test problem at two redshifts. In the
top row, we show the evolution of the pancake before the collapse
at redshift z = 3.6, while it is still in the linear phase. The ‘standard’
(blue lines) and ‘new’ (red lines) schemes give comparable results in
density contrast (left-hand column), temperature (middle column)
and velocity (right-hand column). The simulated evolution agrees
well with the analytical solution (green lines), which describes the
linearized evolution of initial sinusoidal perturbation. At this stage
of the collapse the test is dominated by gravitational forces and
hydrodynamical forces are negligible. Therefore, we do not expect
striking differences to arise between both schemes. Both capture
the linear growth and adiabatic evolution well.

In the bottom row, we show the pancake at the final redshift z = 0.
Again, we compare to the analytical solution in the regions outside
the central shock. In general, both schemes agree but we note the
following differences. The peak density contrast is marginally lower
in the ‘new’ scheme because of additional smoothing introduced by
AC. However, the evolution of density contrast in the low-density
regions is described better by the ‘new’ scheme and is resolved
with less noise. We recall the Sod shock tube (Section 3.1) and
the Sedov blast wave (Section 3.2) problems, where we also find
more accurately resolved density fields and lower peak densities.
Concerning temperature, we find the central shock to be slightly
broader in the ‘new’ scheme, which is caused by two effects. First,
the higher amount of viscosity within the shock leads to an earlier
heating of particles and thus broadens the shocks. Secondly, the
time-step limiting particle wake-up scheme captures highly active
particles before they penetrate into inactive regions, which leads to

a better fluid sampling and also shock broadening. This can also
be noticed in velocity, where the profile is slightly smoothed in
the central region. In summary, our ‘new’ scheme gives reasonable
results in this cosmological test problem and the differences between
both schemes are very small at redshift z = 0. Therefore, our new
implementation is ready to be applied to idealized astrophysical
problems.

5 A STRO PHYSI CAL APPLI CATI ONS

We complete the evaluation of the performance and accuracy of
the two different SPH implementations in idealized simulations of
galaxy and galaxy cluster formation.

5.1 Idealized galaxy formation

In order to check if the ‘new’ scheme is numerically stable when
coupled with a simple effective description of the interstellar
medium, we consider the formation of an isolated disc from a
cooling gas cloud embedded within a rotating dark matter halo.
This idealized application also includes a prescription for cooling,
supernova feedback and star formation of Springel & Hernquist
(2003). We focus on the differences between both hydrodynamical
schemes and therefore, we do not consider a cosmological envi-
ronment or more advanced physical processes such as black holes,
stellar evolution or metals. Numerical comparison simulations (see
e.g. Scannapieco et al. 2012) are a common tool to study the impact
of numerical schemes and physical modules.
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Figure 17. Idealized galaxy formation. We show the spatial distribution of stars, where the colours visualize the age of stars (top panels) and the spatial
distribution of gas, where the colours visualize the star formation rate (bottom panels) at time t = 7.5 Gyr. In the ‘standard’ scheme (left-hand panels), the
distribution of star formation is clumpy and the object appears bulgy. In the ‘new’ scheme (right-hand panels), the distribution of star formation as well as the
stellar component are more extended and pronounced in a disc-like structure. Furthermore, the size of the bulge is smaller and the distribution of young stars
is more extended. We show a more quantitative comparison in Figs 18 and 19.

Within a computational domain of roughly 1 Mpc3, we set up
4041 345 particles resembling a Milky Way-like dark matter halo
with a total mass of 1.8 × 1012 M�. We include 4466 429 gas
particles with a total mass of 2.2 × 1011 M�, which corresponds
to a baryon fraction of approximately 11 per cent. The gravitational
softening length is 450 pc. Initially, the distribution of dark matter
follows a Navarro–Frenk–White profile (Navarro, Frenk & White
1997) and subsequently, we add the gaseous component similar to
the set-up of the hydrostatic test (Section 4.1). The only change is
that here, we give the gas and dark matter a rotational velocity which
peaks at 180 km s−1. Obviously, the initial hydrostatic equilibrium

is broken by the onset of the gas cooling and we follow the evolution
of the cloud for 10 Gyr.

Fig. 17 visualizes the spatial distribution of stars, where the
colours represent the age of stars (top panels), and the spatial dis-
tribution of star-forming gas, where the colours represent the star
formation rate (bottom panels) at time t = 7.5 Gyr. We use the ray-
tracing programme SPLOTCH (Dolag et al. 2008; Jin et al. 2010)
to create the images and choose a linear colour bar for stellar age,
where the red end of the colour bar corresponds to stars older than
3 Gyr and the blue end to recently formed stars. We visualize the
star formation rate since it traces the (cold) gas within the disc and
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Figure 18. Idealized galaxy formation. We show the vertical (z) density profile (left-hand panel), the radial density profile (middle panel) and vertical velocity
dispersion (right-hand panel) of the stellar component. For the radial plots, we use cylindrical bins. In the ‘new’ scheme (red lines), the galactic disc is more
defined, extended and colder.

use a linear colour bar, which ranges from the minimum to the max-
imum value of star formation rate. We choose identical plot settings
for the ‘standard’ scheme (left-hand panels) and the ‘new’ scheme
(right-hand panels), which show striking morphological differences
as follows.

In the ‘standard’ scheme, the galaxy shows a prominent bulge
containing a large fraction of the stellar population. The entire
galaxy appears more spheroidal with a dominant bulge and the
stellar disc is not well pronounced. We find similar features in the
distribution of star formation. The gas disc is asymmetric and only
shows little spiral structure in the face-on view. In the edge-on pro-
jection the disc shows a rolling pin morphology. Both discs are
dominated by bulges, but in the ‘new’ scheme the bulge is sig-
nificantly less dominant. The bulge contains a smaller fraction of
the stellar population and might eventually be associated with an
elliptical bar structure. More as well as younger stars are present
within the disc. The gas disc is symmetric and shows a defined spiral
structure. At this stage of code testing it is difficult to track down
the impact of individual code changes. However, we assume the
most significant differences are caused as follows. In the ‘standard’
scheme, large amounts of AV might lead to dissipation of kinetic
energy, loss of rotational support and numerical angular momentum
transport. Additionally, the mixing problem and its associated nu-
merical surface tension tend to confine cold and dense gas blobs. In

the ‘new’ scheme, significantly smaller amounts of AV are applied
and rotational support can be provided. Furthermore, the inclusion
of AC promotes gas mixing between hot and cold phases.

We continue with a more quantitative comparison of both
schemes, which confirms our previous findings. Fig. 18 shows den-
sity in vertical and radial direction (ρz and ρr) of the stellar com-
ponent as well as the associated vertical velocity dispersion (σ z) at
times 2.5 (dashed lines), 5.0 (dotted lines) and 7.5 Gyr (solid lines).
As seen in ρz (left-hand panel), the ‘new’ scheme produces a thinner
stellar disc and as seen in ρr (middle panel) the disc also extends to
significantly larger radii. This trend is confirmed by σ z (right-hand
panel), which for the ‘standard’ scheme truncates at smaller radii
than for the ‘new’ scheme.

Fig. 19 shows vertical and radial profiles of gas density (ρz and
ρr) as well as the vertical gas velocity dispersion (σ z) of the cold
gas at times 2.5 (dashed lines), 5.0 (dotted lines) and 7.5 Gyr (solid
lines). We employ a temperature criterion of T < 105 K to distin-
guish between cold and hot gas. ρr decreases towards the centre
since the gas within the bulge is hot and exceeds our temperature
threshold. In the ‘new’ scheme, the distribution of cold gas is slightly
more extended in vertical as well as radial direction. However, σ z

indicates a colder gas disc. Most probably, these features are a re-
sult of less numerically induced AV, angular momentum transport
and depression of rotational support. Furthermore, the inclusion of

Figure 19. Idealized galaxy formation. We show the vertical (z) density profile (left-hand panel), the radial density profile (middle panel) and vertical velocity
dispersion (right-hand panel) of the cold gas component. For the radial plots, we use cylindrical bins. We use a temperature criterion of T < 105K to select the
cold gas. In the ‘new’ scheme (red lines), the galactic disc is more defined, extended and colder.
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Figure 20. Santa Barbara Cluster. In boxes with 1 Mpc h −1 side length, we show this slices of gas density (left panels), temperature (middle panels) and
entropy (right panels) at redshift z = 0 for the ‘standard’ scheme (top row) and the ‘new’ scheme (bottom row). In the ‘new’ scheme significantly less dense
and cold gas blobs are present, as AC promotes fluid mixing and blob dissociation. This promotes a smoother distribution of higher temperatures and entropies
at the halo centre, which reduces the ICM complexity.

AC allows mixing between gas phases and promotes dissociation
of cold structures.

5.2 Santa barbara cluster

We carried out the Santa Barbara galaxy cluster (Frenk et al. 1999),
which is a common reference simulation for cosmological hydro-
dynamical simulation codes. Although no analytic solutions exists,
the cluster has been simulated with a large variety of different
codes. The simulation describes the formation of a massive dark
matter halo, with virial mass of 1.2 × 1015 M� and virial radius
of 2.8 Mpc. It is evolved in an Einstein-de Sitter cold dark matter
cosmology with parameters of �M = 1.0, �� = 0.0, and H0 =
50 km s−1 Mpc−1. We choose an initial redshift of z = 20 with a
perturbed distribution of 2563 dark matter particles and 2563 gas
particles, each of equal masses (see also Frenk et al. 1999, for a de-
tailed description of the initial conditions), and follow the formation
until redshift z = 0.

Fig. 20 shows thin slices of gas density (left-hand panels), tem-
perature (middle panels) and entropy (right-hand panels) defining
the thermodynamical state of the hot intracluster medium (ICM) at
redshift z = 0. For the definition of entropy, we use S = T/ne

2/3,
which is commonly used in X-ray studies of the ICM (e.g. Kravtsov

& Borgani 2012). From the maps, we note the following interesting
features.

The gas density (left-hand panels) tends to be smoother in the
‘new’ scheme, which is mostly due to the effect of AC, which
introduces entropy mixing among neighbouring gas particles. In
contrast, the ‘standard’ scheme produces a clumpy distribution of
gas with gas inhomogeneities associated with stripping from merg-
ing haloes and cold blobs. These structures are persistent in the hot
ICM mainly due to the lack of mixing. In turn, these ‘features’ of
the ‘standard’ scheme prevent an efficient action of hydrodynamical
instabilities such as Rayleigh–Taylor and Kelvin–Helmholtz insta-
bilities that are spuriously inhibited. Quite remarkably, the clumps
are much less evident in the ‘new’ scheme, which also produces a
lower value for the central gas density. In the temperatures slices
(middle panels), it becomes clear that gas clumps in the ‘standard’
scheme correspond to objects of low temperature. As expected, the
effect of introducing AC is the reduction of the degree of ICM
thermal complexity.

However, in the ‘new’ scheme the bow-shock, which is induced
by the infall of a large substructure on to the main halo is better
defined than in the ‘standard’ scheme. The bow-shock is located on
the right-hand side of the main halo centre (see Fig. 20). In fact, the
WC4 kernel of the ‘new’ scheme captures the entropy discontinuity
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Figure 21. Santa Barbara cluster. We show radial profiles of gas density (left-hand panel), temperature (middle panel) and entropy (right-hand panel). In each
panel, we compare the results of the ‘standard’ (blue lines) and the ‘new’ (red lines) scheme to a reference solution (black lines) obtained with a piecewise
parabolic grid computation with the MASCLET code (see Quilis 2004). The ‘standard’ scheme does not produce an entropy core but a diverging profile towards
the halo centre. In the ‘new’ scheme an entropy core as well as stable temperature and density profiles are reached, which are all in good agreement to the grid
code computation.

associated with the shock better. Most importantly, we note from
the entropy maps (right-hand panels) that the entropy level in the
innermost region of the clusters increases in the ‘new’ scheme.

Fig. 21 shows radial profiles of gas density, temperature and en-
tropy in the same units as shown in Fig. 20 at redshift z = 0 for
both SPH schemes. Furthermore, for a comparison, we also include
results obtained with the MASCLET grid code (see Quilis 2004).
Both schemes produce quite consistent results at relatively large
radii (>200 kpc h−1) but show striking differences in the innermost
regions. The ‘new’ scheme predicts a flatter central gas density
profile, also with no evidence for the inversion of the temperature
gradient produced by the ‘standard’ scheme. Density and tempera-
ture profiles for the ‘new’ scheme combine to produce a flat entropy
core, which extends out to ≈100 kpc h−1. In the ‘standard’ scheme,
the persistence of cold and dense clumps in the cluster atmosphere
causes their low-entropy gas to sink to the centre of the cluster,
thereby causing the continuous decrease of entropy. In the ‘new’
scheme, AC promotes mixing of gas phases and helps to dissolve
low-entropy gas blobs within the hot ICM atmosphere and causes a
higher entropy level to be established.

The results for the ‘new’ scheme are remarkably similar to those
of the MASCLET code and, more in general, reported by Frenk
et al. (1999), Vazza (2011) and Power et al. (2014) for Eulerian
codes. We point out that such a close agreement has been obtained
without any tuning aimed at producing the entropy core predicted
by Eulerian codes in cosmological simulations for the formation
of galaxy clusters. The choice of parameters for the ‘new’ SPH
scheme was only aimed at preventing the limitations of ‘standard’
SPH in terms of the description of discontinuities and efficiency
to capture hydrodynamical instabilities. Note also that these results
for the Santa Barbara cluster are in qualitative agreement with those
obtained in the hydrostatic sphere (see Section 4.1). The behaviour
of both schemes are in the same direction, even if they are less
evident than in this Santa Barbara cluster test, due to the lack of the
hierarchical process of structure formation within a cosmological
environment.

Additionally, we analyse the simulation also at redshifts z > 0. In
general, the profiles of the high-redshift haloes show the same be-
haviour as their low-redshift counterparts, provided that we choose
quiet and virialized objects. Objects, which host dynamically im-
portant shocks or undergo merger events show altered radial pro-
files because the timing of the mergers depends slightly on the

simulation scheme. Therefore, a sensible comparison of the en-
tire redshift-evolution and behaviour of both schemes during these
violent phases of structure formation is not possible and requires
controlled experiments.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we presented a novel implementation of the SPH
scheme in the GADGET code, which provides improved accuracy for
simulations of galaxies and large-scale cosmic structures. Since the
first development of SPH great advancements have been made to
improve the reliability and stability of this hydrodynamical scheme
and, in particular, much effort has been spent in a proper treatment
of discontinuities. We implemented and improved several of these
modifications of SPH into the developer version of GADGET-3, and
tested them against a number of standard hydrodynamical prob-
lems, as well as first simple astrophysical applications. The main
modifications (see also Table 1) of this ‘new’ scheme, when com-
pared to the ‘standard’ (see e.g. Price 2012a) formulation of SPH,
can be summarized as follows.

(i) AV is introduced for a proper description of shocks. It pre-
vents particle interpenetration into unshocked regions and provides
a regularization of the particle field, which supports a proper sam-
pling of the fluid. First, spatially constant low-order formulations
of AV introduce viscosity not only at shocks, but also within un-
shocked regions and shearing flows, thereby leading to an overly
viscous behaviour and a too fast dissipation of kinetic energy. Most
commonly, the so called Balsara switch (Balsara 1995) is used to
reduce viscosity in shear flows, while further attempts were made
to reduce AV where it is unwanted (Morris & Monaghan 1997;
Dolag et al. 2005). Recently, modern formulations of AV (Cullen &
Dehnen 2010; Hu et al. 2014) improved greatly on a correct detec-
tion of shocks and use high-order gradient estimators to calculate
divergence and curl of velocity from the full-velocity gradient ma-
trix instead of the classical SPH estimators. This allows shear flow
limiters, such as the Balsara one, to work more accurately and sup-
press AV outside shocks and in shearing flows. In this way, kinetic
energy is better preserved, thus helping simulating turbulent flows
or hydrodynamical instabilities with higher accuracy. In our ‘new’
scheme, we compute the velocity gradients from the full velocity
gradient matrix instead of low-order classic kernel derivatives.

MNRAS 455, 2110–2130 (2016)



Cosmological SPH simulations 2129

Table 2. Overview of our test problems. For each test, we note the relative importance of a standard method (
√

) or an improved method (
√

(imp.))
of AV, AC, time-step limiter (WakeUp) and the physical processes involved beyond pure hydrodynamics such as gravity (Grav.), cosmological time
integration (Cosmo), radiative cooling, star formation and supernova feedback (Radiat.).

AV AC WakeUp Grav. Cosmo Radiat. Main result

Sod shock tube
√ √

– – – – Smooth density field/Sharp shock front/No pressure–blip
Sedov blast wave

√ √ √
– – – Sharp shock front/Central temperature profile

Keplerian ring
√

(imp.) – – – – – Stability of ring/No angular momentum transport
Cold blob test

√ √
– – – – No surface tension/Mixing of gas phases

KH instability
√

(imp.)
√

– – – – Growth of perturbation/Mixing of gas phases
Turbulent boxes

√
(imp.) – – – – – Steady-state spectrum/Preservation of kinetic energy

Hydrostatic test –
√

(imp.) –
√

– – Stability in radial profiles of density and entropy
Evrard collapse

√
(imp.)

√
(imp.)

√ √
– – Radial profiles in density and entropy

Zel’dovich pancake
√ √

(imp.)
√ √ √

– Smooth density field/Sharp shock front
Idealized galaxy

√
(imp.)

√
(imp.) –

√
–

√
Extended stellar and gas discs

SB cluster
√

(imp.)
√

(imp.)
√ √ √

– Formation of entropy core/Dissociation of cold blobs

(ii) Artificial conductivity (AC) is introduced to provide a proper
fluid description at contact discontinuities. In fact, in the density–
entropy formulation a spurious surface tension arises at disconti-
nuities, which also suppresses the formation of instabilities and
prevents mixing of different fluid phases. Lately, AC (see e.g. Price
2008) or pressure–entropy formulations (Hopkins 2013; Saitoh &
Makino 2013) were proposed to overcome these issues. AC is ap-
plied at contact discontinuities and promotes the transport of heat be-
tween particles. However, in the presence of gravitationally induced
pressure or temperature gradients, common AC schemes might lead
to unwanted transport opposite to the gravitational force. Therefore,
numerical limiters are necessary to be included in AC. In our ‘new’
scheme, we include locally adaptive AC to transport heat and treat
contact discontinuities in SPH and we limit the amount of AC by
correcting for gravitationally induced pressure gradients. While we
demonstrated that our AC model is quite efficient at reducing such a
surface tension, admittedly a small residual effect is still present, and
could potentially impact the long-term stability by overdiffusion.

(iii) As for the choice of the interpolating kernel, the commonly
employed cubic spline function has been shown to become easily
unstable, which leads to spurious pairs of particles, incorrect gradi-
ent estimators and, in general, a poor fluid sampling. Therefore, a
change of the kernel function is highly recommended, where com-
monly the Wendland kernels (Dehnen & Aly 2012) are now used.
In our ‘new’ scheme, we employ the Wendland C4 kernel function
with 200 neighbours instead of a cubic spline with 64 neighbours.
We calculate the density in a classic fashion from the mass distribu-
tion of particles and also compute the hydrodynamical forces with
the density–entropy formulation.

(iv) At last, within supersonic shocks highly dynamical and com-
putationally active particles can penetrate into regions containing
computationally inactive particles causing distortions in the fluid
sampling and incorrect hydrodynamical solutions. In our ‘new’
scheme, we use a particle wake-up time-step limiting scheme (see
Saitoh & Makino 2009; Pakmor et al. 2012) as a solution, so as to
shorten the time-steps whenever necessary and allow particles to
become active earlier.

To highlight the improvements associated with this advanced SPH
implementation, we investigate both the new and the original
scheme in a variety of hydrodynamical standard tests, with and with-
out gravity. Furthermore, we study the behaviour in the cosmologi-
cal problem of the formation of galaxy cluster and enable simple pre-
scriptions for radiative cooling, supernova feedback and star forma-
tion for a test simulation of an isolated rotating disc galaxy. Table 2
presents an overview of our test problems and shows if SPH mod-

ules are important in a standard (
√

) or improved (
√

(imp.)) with
respect to GADGET-SPH without our modifications. Furthermore, we
list the probed physical features of each test.

The inclusion of AC in SPH changes the thermodynamical evolu-
tion of density, internal energy and pressure. Additionally, physical
conduction (see e.g. Arth et al. 2014) is also sometimes employed in
cosmological SPH simulations to promote (an)isotropic heat trans-
port, which also helps to overcome the limitations of ‘standard’
GADGET-SPH. The joint effect of artificial conduction, introduced
for purely numerical reasons, and of physical conduction awaits
further investigations.

In summary, the ‘new’ GADGET-SPH scheme presented here per-
forms better than the ‘standard’ one in every single of our test simu-
lations. Therefore, it provides a much improved numerical descrip-
tion for weakly collisionless plasmas in cosmological simulations
down to galactic scales. We base our future simulations of galaxies
and large-scale cosmic structures on this updated formulation of
SPH. We will also carry out detailed studies of galactic magnetic
fields (see Beck et al. 2013, 2014) and the ICM with this advanced
method. In view of these applications, it is important to verify how
this new SPH implementation performs when compared to other
variants of SPH and to Eulerian codes. To this purpose, this SPH
implementation participated to the nIFTy cosmology comparison
project (Sembolini et al. 2015), which compares the performances
of different hydrodynamical codes in cosmological re-simulations
of galaxy clusters. In that comparison project, our code is shown to
agree very well to both Eulerian codes and modern SPH implemen-
tations on the radial profiles of gas density, temperature and entropy.
Given the improvements in the description of hydrodynamics pro-
vided by the new SPH implementation presented here, we regard it
as the core of an efficient code for modern simulations of cosmic
structure formation.
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