130 research outputs found

    The chemical enrichment of the ICM from hydrodynamical simulations

    Get PDF
    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 18; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    INTEGRAL observations of the Crab pulsar

    Full text link
    The paper presents the timing and spectral analysis of several observations of the Crab pulsar performed with INTEGRAL in the energy range 3-500 keV. All these observations, when summed together provide a high statistics data set which can be used for accurate phase resolved spectroscopy. A detailed study of the pulsed emission at different phase intervals is performed. The spectral distribution changes with phase showing a characteristic reverse S shape of the photon index. Moreover the spectrum softens with energy, in each phase interval, and this behavior is adequately modeled over the whole energy range 3-500 keV with a single curved law with a slope variable with Log(E), confirming the BeppoSAX results on the curvature of the pulsed emission. The bending parameter of the log-parabolic model is compatible with a single value of 0.14+/-0.02 over all phase intervals. Results are discussed within the three-dimensional outer gap model.Comment: 10 pages, 7 figures, accepted by Astronomy and Astrophysic

    The Circumgalactic Medium in Massive Halos

    Full text link
    This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.Comment: 29 pages, 7 figures, invited review to appear in "Gas Accretion onto Galaxies", Astrophysics and Space Science Library, eds. A. Fox & R. Dave, to be published by Springe

    The optical light curve of the LMC pulsar B0540-69 in 2009

    Full text link
    This paper reports a detailed analysis of the optical light curve of PSR B0540-69, the second brightest pulsar in the visible band, obtained in 2009 (Jan. 18 and 20, and Dec. 14, 15, 16, 18) with the very high speed photon counting photometer Iqueye mounted at the ESO 3.6-m NTT in La Silla (Chile). The optical light curve derived by Iqueye shows a double structure in the main peak, with a raising edge steeper than the trailing edge. The double peak can be fitted by two Gaussians with the same height and FWHM of 13.3 and 15.5 ms respectively. Our new values of spin frequencies allow to extend by 3.5 years the time interval over which a reliable estimate of frequency first and second derivatives can be performed. A discussion of implications on the braking index and age of the pulsar is carried out. A value of n = 2.087 +/- 0.007 for the overall braking index from 1987 to 2009 is derived. The braking index corrected age is confirmed around 1700 years.Comment: Accepted for publication in MNRA

    Chemodynamics of a simulated disc galaxy: initial mass functions and Type Ia supernova progenitors

    Get PDF
    We trace the formation and advection of several elements within a cosmological adaptive mesh refinement simulation of an L� galaxy. We use nine realizations of the same initial conditions with different stellar initial mass functions (IMFs), mass limits for Type II and Type Ia supernovae (SNII, SNIa) and stellar lifetimes to constrain these subgrid phenomena. Our code includes self-gravity, hydrodynamics, star formation, radiative cooling and feedback from multiple sources within a cosmological framework. Under our assumptions of nucleosynthesis we find that SNII with progenitor masses of up to 100 M� are required to match low-metallicity gas oxygen abundances. Tardy SNIa are necessary to reproduce the classical chemical evolution ‘knee’ in [O/Fe]–[Fe/H]: more prompt SNIa delayed time distributions do not reproduce this feature. Within our framework of hydrodynamical mixing of metals and galaxy mergers we find that chemical evolution is sensitive to the shape of the IMF and that there exists a degeneracy with the mass range of SNII. We look at the abundance plane and present the properties of different regions of the plot, noting the distinct chemical properties of satellites and a series of nested discs that have greater velocity dispersions are more α-rich and metal poor with age

    The x-ray microcalorimeter spectrometer onboard Athena

    Get PDF
    Trabajo presentado a la conferencia: "Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray" celebrada en Amsterdam (Holanda) el 1 de julio de 2012.-- et al.One of the instruments on the Advanced Telescope for High-Energy Astrophysics (Athena) which was one of the three missions under study as one of the L-class missions of ESA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high-spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor (TES) and absorbers that consist of metal and semi-metal layers and a multiplexed SQUID readout. The array (32 x 32 pixels) provides an energy resolution of < 3 eV. Due to the large collection area of the Athena optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. Compared to the requirements for the same instrument on IXO, the performance requirements have been relaxed to fit into the much more restricted boundary conditions of Athena. In this paper we illustrate some of the science achievable with the instrument. We describe the results of design studies for the focal plane assembly and the cooling systems. Also, the system and its required spacecraft resources will be given. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.Peer Reviewe

    The Hot and Energetic Universe: The evolution of galaxy groups and clusters

    Get PDF
    Major astrophysical questions related to the formation and evolution of structures, and more specifically of galaxy groups and clusters, will still be open in the coming decade and beyond: what is the interplay of galaxy, supermassive black hole, and intergalactic gas evolution in the most massive objects in the Universe - galaxy groups and clusters? What are the processes driving the evolution of chemical enrichment of the hot diffuse gas in large-scale structures? How and when did the first galaxy groups in the Universe, massive enough to bind more than 10^7 K gas, form? Focussing on the period when groups and clusters assembled (0.5<z<2.5), we show that, due to the continuum and line emission of this hot intergalactic gas at X-ray wavelengths, Athena+, combining high sensitivity with excellent spectral and spatial resolution, will deliver breakthrough observations in view of the aforementioned issues. Indeed, the physical and chemical properties of the hot intra-cluster gas, and their evolution across time, are a key to understand the co-evolution of galaxy and supermassive black hole within their environments.Comment: Supporting paper for the science theme The Hot and Energetic Universe to be implemented by the Athena+ X-ray observatory (http://www.the-athena-x-ray-observatory.eu). 10 pages, 4 figure

    A faint type of supernova from a white dwarf with a helium-rich companion

    Get PDF
    Supernovae (SNe) are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as as type Ib/c and II SNe, and are associated with young stellar populations. A type Ia SN is thought to arise from the thermonuclear detonation of a white dwarf star composed mainly of carbon and oxygen, whose mass approaches the Chandrasekhar limit. Such SNe are observed in both young and old stellar environments. Here we report our discovery of the faint type Ib SN 2005E in the halo of the nearby isolated galaxy, NGC 1032. The lack of any trace of recent star formation near the SN location (Fig. 1), and the very low derived ejected mass (~0.3 M_sun), argue strongly against a core-collapse origin for this event. Spectroscopic observations and the derived nucleosynthetic output show that the SN ejecta have high velocities and are dominated by helium-burning products, indicating that SN 2005E was neither a subluminous nor a regular SN Ia (Fig. 2). We have therefore found a new type of stellar explosion, arising from a low-mass, old stellar system, likely involving a binary with a primary white dwarf and a helium-rich secondary. The SN ejecta contain more calcium than observed in any known type of SN and likely additional large amounts of radioactive 44Ti. Such SNe may thus help resolve fundamental physical puzzles, extending from the composition of the primitive solar system and that of the oldest stars, to the Galactic production of positrons.Comment: Revised to reflect published version in Nature, May 20th, 2010. Additional data and analysis are include

    The First Decade of Science with Chandra and XMM-Newton

    Full text link
    NASA's Chandra X-ray Observatory and ESA's XMM-Newton made their first observations one decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years! In this review, we highlight some of the many discoveries made by Chandra and XMM-Newton that have transformed 21st century astronomy and briefly discuss prospects for future research.Comment: 8 pages, 10 figures, published in Natur
    corecore