20 research outputs found

    New applications of continuous atmospheric O2 measurements: meridional transects across the Atlantic Ocean, and improved quantification of fossil fuel‐derived CO2

    Get PDF
    High precision, continuous measurements of atmospheric O2 and CO2 are a valuable tool for gaining insight into carbon cycle processes, and for separating land biospheric, oceanic and fossil fuel fluxes of CO2. This thesis presents a new atmospheric O2 and CO2 measurement system that has been deployed on board a commercial container ship, travelling continuously between Germany (~55°N) and Argentina (~35°S). These data are the first ongoing atmospheric O2 measurements across the Atlantic Ocean, closing a gap in the global atmospheric O2 network. The Atlantic meridional transects of atmospheric O2 and CO2 display latitudinally‐varying seasonality. The annual mean latitudinal gradient in APO (Atmospheric Potential Oxygen; a tracer derived from O2 and CO2 measurements) does not show a pronounced bulge at the equator, in contrast to observations across the Pacific Ocean. Atmospheric O2 and CO2 measurements from Norfolk, UK are used to demonstrate a novel method for quantifying fossil fuel derived CO2 (ffCO2), using APO data. This APO ffCO2 quantification method is more precise than the frequently‐used CO tracer method, owing to a smaller range of APO:CO2 fossil fuel emission ratios compared to the CO:CO2 range. A sensitivity analysis of the fossil fuel emission ratios also indicates that the APO method is very likely more accurate than the CO method, and can therefore be used independently of 14CO2 measurements (unlike the CO method), which are costly and highly unreliable in many UK regions, owing to nuclear power plant influences. These new applications of atmospheric O2 measurements have significant future potential. The shipboard data can be used to test and improve global climate model estimates of meridional oceanic heat and carbon transport in the Atlantic. Using APO to quantify ffCO2 has significant policy relevance, with the potential to provide more accurate and more precise top‐down verification of fossil fuel emissions

    Novel quantification of regional fossil fuel CO2 reductions during COVID-19 lockdowns using atmospheric oxygen measurements

    Get PDF
    It is not currently possible to quantify regional-scale fossil fuel carbon dioxide (ffCO2) emissions with high accuracy in near real time. Existing atmospheric methods for separating ffCO2 from large natural carbon dioxide variations are constrained by sampling limitations, so that estimates of regional changes in ffCO2 emissions, such as those occurring in response to coronavirus disease 2019 (COVID-19) lockdowns, rely on indirect activity data. We present a method for quantifying regional signals of ffCO2 based on continuous atmospheric measurements of oxygen and carbon dioxide combined into the tracer "atmospheric potential oxygen"(APO). We detect and quantify ffCO2 reductions during 2020-2021 caused by the two U.K. COVID-19 lockdowns individually using APO data from Weybourne Atmospheric Observatory in the United Kingdom and a machine learning algorithm. Our APO-based assessment has near-real-time potential and provides high-frequency information that is in good agreement with the spread of ffCO2 emissions reductions from three independent lower-frequency U.K. estimates

    In situ measurements of atmospheric O2 and CO2 reveal an unexpected O2 signal over the tropical Atlantic Ocean

    Get PDF
    We present the first meridional transects of atmospheric O2 and CO2 over the Atlantic Ocean. We combine these measurements into the tracer atmospheric potential oxygen (APO), which is a measure of the oceanic contribution to atmospheric O2 variations. Our new in situ measurement system, deployed on board a commercial container ship during 2015, performs as well as or better than existing similar measurement systems. The data show small short-term variability (hours to days), a step-change corresponding to the position of the Intertropical Convergence Zone (ITCZ), and seasonal cycles that vary with latitude. In contrast to data from the Pacific Ocean and to previous modeling studies, our Atlantic Ocean APO data show no significant bulge in the tropics. This difference cannot be accounted for by interannual variability in the position of the ITCZ or the Atlantic Meridional Mode Index and appears to be a persistent feature of the Atlantic Ocean system. Modeled APO using the TM3 atmospheric transport model does exhibit a significant bulge over the Atlantic and overestimates the interhemispheric gradient in APO over the Atlantic Ocean. These results indicate that either there are inaccuracies in the oceanic flux data products in the equatorial Atlantic Ocean region, or that there are atmospheric transport inaccuracies in the model, or a combination of both. Our shipboard O2 and CO2 measurements are ongoing and will reveal the long-term nature of equatorial APO outgassing over the Atlantic as more data become available

    Diurnal variability of atmospheric O-2, CO2, and their exchange ratio above a boreal forest in southern Finland

    Get PDF
    The exchange ratio (ER) between atmospheric O(2 )and CO2 is a useful tracer for better understanding the carbon budget on global and local scales. The variability of ER (in mol O(2 )per mol CO2) between terrestrial ecosystems is not well known, and there is no consensus on how to derive the ER signal of an ecosystem, as there are different approaches available, either based on concentration (ERatmos) or flux measurements (ERforest). In this study we measured atmospheric O-2 and CO2 concentrations at two heights (23 and 125 m) above the boreal forest in Hyytiala, Finland. Such measurements of O-2 are unique and enable us to potentially identify which forest carbon loss and production mechanisms dominate over various hours of the day. We found that the ERatmos signal at 23 m not only represents the diurnal cycle of the forest exchange but also includes other factors, including entrainment of air masses in the atmospheric boundary layer before midday, with different thermodynamic and atmospheric composition characteristics. To derive ERforest, we infer O(2 )fluxes using multiple theoretical and observation-based micro-meteorological formulations to determine the most suitable approach. Our resulting ERforest shows a distinct difference in behaviour between daytime (0.92 +/- 0.17 mol mol(-1)) and nighttime (1.03 +/- 0.05 mol mol(-1)). These insights demonstrate the diurnal variability of different ER signals above a boreal forest, and we also confirmed that the signals of ERatmos and ERforest cannot be used interchangeably. Therefore, we recommend measurements on multiple vertical levels to derive O-2 and CO2 fluxes for the ERforest signal instead of a single level time series of the concentrations for the ERatmos signal. We show that ERforest can be further split into specific signals for respiration (1.03 +/-; 0.05 mol mol-1) and photosynthesis (0.96 +/- 0.12 molmol(-1)). This estimation allows us to separate the net ecosystem exchange (NEE) into gross primary production (GPP) and total ecosystem respiration (TER), giving comparable results to the more commonly used eddy covariance approach. Our study shows the potential of using atmospheric O-2 as an alternative and complementary method to gain new insights into the different CO2 signals that contribute to the forest carbon budget.Peer reviewe

    A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements

    Get PDF
    The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (ÎŒatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices

    Evaluating the performance of a Picarro G2207-i analyser for high-precision atmospheric O2 measurements

    No full text
    Fluxes of oxygen (O2) and carbon dioxide (CO2) in and out of the atmosphere are strongly coupled for terrestrial biospheric exchange processes and fossil fuel combustion but are uncoupled for oceanic air-sea gas exchange. High-precision measurements of both species can therefore provide constraints on the carbon cycle and can be used to quantify fossil fuel CO2 (ffCO2) emission estimates. In the case of O2, however, due to its large atmospheric mole fraction of O2 (~20.9 %) it is very challenging to measure small variations to the degree of precision and accuracy required for these applications. We have tested an atmospheric O2 analyser based on the principle of cavity ring-down spectroscopy (Picarro Inc., model G2207-i), both in the laboratory and at the Weybourne Atmospheric Observatory (WAO) field station in the UK, in comparisons to well-established, pre-existing atmospheric O2 and CO2 measurement systems. In laboratory tests analysing air in high-pressure cylinders, from the Allan deviation we calculated a precision of ± 1 ppm (1σ standard deviation of 300 seconds mean), and a 24-hour peak-to-peak range of hourly averaged values of 1.2 ppm. These results are close to atmospheric O2 compatibility goals as set by the UN World Meteorological Organization. From measurements of ambient air conducted at WAO we found that the built-in water correction of the G2207-i does not sufficiently correct for the influence of water vapour on the O2 mole fraction. When sample air was pre-dried and employing a 5-hourly baseline correction with a reference gas cylinder, the G2207-i’s results showed an average difference from the established O2 analyser of 13.6 ± 7.5 per meg (over two weeks of continuous measurements). Over the same period, based on measurements of a so-called “target tank” (sometimes known as a “surveillance tank”), analysed for 12 minutes every 7 hours, we calculated a repeatability of ± 5.7 ± 5.6 per meg and a compatibility of ± 10.0 ± 6.7 per meg for the G2207-i. To further examine the G2207-i’s performance in real-world applications we used ambient air measurements of O2 together with concurrent CO2 measurements to calculate ffCO2. Due to the imprecision of the G2207-i, the ffCO2 calculated showed large differences from that calculated from the established system, and had a large uncertainty of ± 13.0 ppm, which was roughly double that from the established system (± 5.8 ppm)

    12 years of continuous atmospheric O2, CO2 and APO data from Weybourne Atmospheric Observatory in the United Kingdom

    No full text
    We present analyses of a 12-year time series of continuous atmospheric measurements of O2 and CO2 at the Weybourne Atmospheric Observatory in the United Kingdom. These measurements are combined into the term Atmospheric Potential Oxygen (APO), a tracer that is conservative with respect to terrestrial biosphere processes. The CO2, O2 and APO datasets discussed are hourly averages between May 2010 and December 2021. We include details of our measurement system and calibration procedures, and describe the main long-term and seasonal features of the time series. The 2-minute repeatability of the measurement system is approximately ±3 per meg for O2 and approximately ±0.005 ppm for CO2. The time series shows average long-term trends of 2.40 ppm yr-1 (2.38 to 2.42) for CO2, -24.0 per meg yr-1 for O2 (-24.3 to -23.8) and -11.4 per meg yr-1 (-11.7 to -11.3) for APO, over the 12-year period. The average seasonal cycle peak-to-peak amplitudes are 16 ppm for CO2, 134 per meg for O2, and 68 per meg for APO. The diurnal cycles of CO2 and O2 vary considerably between seasons. The datasets are publicly available at https://doi.org/10.18160/Z0GF-MCWH (Adcock et al., 2023) and have many current and potential scientific applications in constraining carbon cycle processes, such as investigating air-sea exchange of CO2 and O2, and top-down quantification of fossil fuel CO2

    Two decades of flask observations of atmospheric ÎŽO2/N2, CO2, and APO at stations Lutjewad (the Netherlands) and Mace Head (Ireland) plus 3 years from Halley station (Antarctica)

    Get PDF
    We present 20-year flask sample records of atmospheric CO2, ÎŽ(O2/N2), and atmospheric potential oxygen (APO) from the stations Lutjewad (the Netherlands) and Mace Head (Ireland), and a 3-year record from Halley station (Antarctica). We include details of our calibration procedures and the stability of our calibration scale over time, which we estimate to be 3 per meg over the 11 years of calibration, and our compatibility with the international Scripps O2 scale. The measurement records from Lutjewad and Mace Head show similar long-term trends during the period 2002–2018 of 2.31 ± 0.07 ppm yr−1 for CO2 and −21.2 ± 0.8 per meg yr−1 for ÎŽ(O2/N2) at Lutjewad, and 2.22 ± 0.04 ppm yr−1 for CO2 and −21.3 ± 0.9 per meg yr−1 for ÎŽ(O2/N2) at Mace Head. They also show a similar ÎŽ(O2/N2) seasonal cycle with an amplitude of 54 ± 4 per meg at Lutjewad and 61 ± 5 per meg at Mace Head, while the CO2 seasonal amplitude at Lutjewad (16.8 ± 0.5 ppm) is slightly higher than that at Mace Head (14.8 ± 0.3 ppm). We show that the observed long-term trends and seasonal cycles are in good agreement with the measurements from various other stations, especially the measurements from the Weybourne Atmospheric Observatory (United Kingdom). However, there are remarkable differences in the progression of annual trends between the Mace Head and Lutjewad records for ÎŽ(O2/N2) and APO, which might in part be caused by sampling differences, but also by environmental effects, such as North Atlantic Ocean oxygen ventilation changes to which Mace Head is more sensitive. The Halley record shows clear trends and seasonality in ÎŽ(O2/N2) and APO, the latter agreeing especially well with continuous measurements at the same location made by the University of East Anglia (UEA), while CO2 and ÎŽ(O2/N2) present slight disagreements, most likely caused by small leakages during sampling. From our 2002–2018 records, we find a good agreement with Global Carbon Budget 2021 (Friedlingstein et al. (2021) for the global ocean carbon sink: 2.1 ± 0.8 PgC yr−1 , based on the Lutjewad record. The data presented in this work are available at https://doi.org/10.18160/qq7d-t060 (Nguyen et al., 2021)

    Atmospheric oxygen as a tracer for fossil fuel carbon dioxide: a sensitivity study in the UK

    No full text
    Abstract. We investigate the use of oxygen (O2) and carbon dioxide (CO2) measurements for the estimation of the fossil fuel component of atmospheric CO2 in the UK. Atmospheric potential oxygen (APO) – a tracer that combines O2 and CO2, minimising the influence of terrestrial biosphere fluxes – is simulated at three sites in the UK, two of which have APO measurements. We present a set of model experiments that estimate the sensitivity of APO simulations to key inputs: fluxes from the ocean, fossil fuel flux magnitude and distribution, the APO baseline, and the ratio of O2 to CO2 fluxes from fossil fuel combustion and the terrestrial biosphere. To estimate the influence of uncertainties in ocean fluxes, we compared three ocean O2 flux estimates, from the NEMO – ERSEM and ECCO-Darwin ocean models, and the Jena Carboscope inversion. The sensitivity of APO to fossil fuel emission magnitudes and to terrestrial biosphere and fossil fuel exchange ratios was investigated through Monte Carlo sampling within literature uncertainty ranges, and by comparing different inventory estimates. Of the factors that could potentially compromise APO-derived fossil fuel CO2 estimates, we find that the ocean O2 flux estimate has the largest overall influence at the three sites in the UK. At times, this influence is comparable to the contribution to APO of simulated fossil fuel CO2. We find that simulations using different ocean fluxes differ from each other substantially, with no single estimate, or a simulation with zero ocean flux, providing a significantly closer fit to the observations. Furthermore, the uncertainty in the ocean contribution to APO could lead to uncertainty in defining an appropriate regional background from the data. Our findings suggest that the contribution of non-terrestrial sources need to be well accounted for, in order to reduce their potential influence on inferred fossil fuel CO2
    corecore