49 research outputs found

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    Strength of a cement-based dental material: Early age testing and first micromechanical modeling at mature age

    Get PDF
    The compressive strength evolution of 37 centigrade-cured Biodentine, a cement-based dental material, is quantified experimentally by crushing cylindrical specimens with length-to-diameter ratios amounting to 1.84 and 1.34, respectively, at nine different material ages ranging from 1 h to 28 days. After excluding strength values significantly affected by imperfections, formulae developed for concrete are i) adapted for inter- and extrapolation of measured strength values, and ii) used for quantification of the influence of the slenderness of the specimens on the compressive strength. The microscopic origin of the macroscopic uniaxial compressive strength of mature Biodentine is investigated by means of a micromechanics model accounting for lognormal stiffness and strength distributions of two types of calcite-reinforced hydrates. The following results are obtained: The material behavior of Biodentine is non-linear in the first few hours after production. After that, Biodentine behaves virtually linear elastic all the way up to sudden brittle failure. The strength evolution of Biodentine can be well described as the exponential of a function involving the square root of the inverse of the material age. The genuine uniaxial compressive strength evolution can be quantified using a correction formula taken from a standard for testing of concrete, which accounts for length-to-diameter ratios of cylindrical samples deviating from 2. Multiscale modeling suggests that 63% of the overall material volume, occupied by dense calcite-reinforced hydration products, fail virtually simultaneously. This underlines the highly optimized nature of the studied material

    A new cube movement test for verification of simulations of contact processes of blocks of different size in geological hazards

    No full text
    In many geological hazards, such as landslides, a large number of irregular blocks start moving. Their interaction on the way down renders prediction of disaster scopes difficult. To study this process and to provide a novel method for validation and calibration of numerical tools for its simulation, a cube movement test is designed. The goal of this research is to obtain patterns of movement of cubes, starting from different initial stacking arrangements. Cubes of four sizes are inserted into a hollow cylinder. Their distribution after lifting the cylinder is determined. Three categories of tests refer to three different strategies of filling the cubes into the cylinder. In order to simulate cube movement tests, a numerical tool is developed in the framework of the continuum-discontinuum element method (CDEM). The contact between the individual cubes is modeled by the contact-pairs-based algorithm. Both the contact state and type are detected by determining the half-space relation between contact pairs. The final positions of the cubes are strongly related to their initial arrangement. The latter is different in every test, even if the same strategy is used to fill the cubes into the cylinder. It is found that at least 20 experiments/simulations are required to obtain statistically representative results. The new test provides valuable data for validation of numerical tools used for the simulation of mass movement processes. The proposed numerical method captures the complicated movements of blocks

    Thermally activated viscoelasticity of cement paste : Minute-long creep tests and micromechanical link to molecular properties

    No full text
    The stiffness of cementitious materials decreases with increasing temperature. Herein, macroscopic samples of mature cement pastes are subjected at 20, 30, and 45 degrees C, respectively, to three-minutes-long creep compression experiments. The test evaluation is based on the linear theory of viscoelasticity and Boltzmann's superposition principle. This yields macroscopic elastic and creep moduli as a function of temperature. A state-of-the-art multiscale model for creep homogenization of cement paste is extended to account for temperature-dependent elastic and creep moduli of the hydrate gel. This extension is based on results from published molecular simulations. Temperature-independent stiffness is assumed for cement clinker. Upscaling to the macroscale of cement paste yields elastic and creep moduli which agree well with the aforementioned experimental results. The Arrhenius-type activation energy of the creep modulus is found to be independent of scale, composition, and maturity, because of ineffective stress redistributions from creeping to non-creeping constituents
    corecore