45 research outputs found

    Executive functions in elite athletes – Comparing open-skill and closed-skill sports and considering the role of athletes' past involvement in both sport categories

    Get PDF
    Previous research documented differences in executive functions between elite athletes in different sports. It was argued that athletes in sport disciplines with higher cognitive demands (i.e., open-skill) show better executive functions than athletes in less cognitively challenging sport disciplines (i.e., closed-skill). In the current study, we aimed at detecting differences in executive functions between elite athletes in open-skill versus closed-skill sports and questioned the role of their total involvement in these sports until the age of 18 on executive functions. Seventy-five elite athletes (45 males and 30 females; Mage = 23.03 ± 4.41 years) from various sports were classified as open- or closed-skill athletes based on the sport they currently competed in. The athletes conducted a series of neuro-psychological tests measuring working memory, inhibition, and cognitive flexibility (Design Fluency test, Trail Making test, Flanker task, and a 2-back task). Retrospective interviews assessed athletes’ sport involvement in open-skill and closed-skill sports until the age of 18. MANCOVAs revealed that athletes in open-skill sports performed better on measures of working memory and cognitive flexibility. Generalized Linear Models displayed that elite athletes in closed-skill sports, with greater involvement in open-skill sports until the age of 18, performed better during working memory and cognitive flexibility tasks. The results indicate that extensive time spent in open- and closed-skill sports can affect executive functions in elite athletes. A high involvement in open-skill sports proved to be beneficial for executive functions, in particular for elite athletes in closed-skill sports. These findings suggest that experiences in cognitively demanding sports may cause benefits for the development of executive functions

    Intermixing of Fe and Cu on the atomic scale by high-pressure torsion as revealed by DC- and AC-SQUID susceptometry and atom probe tomography

    Full text link
    The capability of high-pressure torsion on the preparation of supersaturated solid solutions, consisting of Cu-14Fe (wt.%), is studied. From microstructural investigations a steady state is obtained with nanocrystalline grains. The as-deformed state is analyzed with atom probe tomography, revealing an enhanced solubility and the presence of Fe-rich particles. The DC-hysteresis loop shows suppressed long range interactions in the as-deformed state and evolves towards a typical bulk hysteresis loop when annealed at 500{\deg}C. AC-susceptometry measurements of the as-deformed state reveal the presence of a superparamagnetic blocking peak, as well as a magnetic frustrated phase, whereas the transition of the latter follows the Almeida-Thouless line, coinciding with the microstructural investigations by atom probe tomography. AC-susceptometry shows that the frustrated state vanishes for annealing at 250{\deg}C

    Oncogenic role of miR-155 in anaplastic large cell lymphoma lacking the t(2;5) translocation.

    Get PDF
    Anaplastic large cell lymphoma (ALCL) is a rare, aggressive, non-Hodgkin's lymphoma that is characterized by CD30 expression and disease onset in young patients. About half of ALCL patients bear the t(2;5)(p23;q35) translocation, which results in the formation of the nucleophosmin-anaplastic lymphoma tyrosine kinase (NPM-ALK) fusion protein (ALCL ALK(+)). However, little is known about the molecular features and tumour drivers in ALK-negative ALCL (ALCL ALK(-)), which is characterized by a worse prognosis. We found that ALCL ALK(-), in contrast to ALCL ALK(+), lymphomas display high miR-155 expression. Consistent with this, we observed an inverse correlation between miR-155 promoter methylation and miR-155 expression in ALCL. However, no direct effect of the ALK kinase on miR-155 levels was observed. Ago2 immunoprecipitation revealed miR-155 as the most abundant miRNA, and enrichment of target mRNAs C/EBPÎČ and SOCS1. To investigate its function, we over-expressed miR-155 in ALCL ALK(+) cell lines and demonstrated reduced levels of C/EBPÎČ and SOCS1. In murine engraftment models of ALCL ALK(-), we showed that anti-miR-155 mimics are able to reduce tumour growth. This goes hand-in-hand with increased levels of cleaved caspase-3 and high SOCS1 in these tumours, which leads to suppression of STAT3 signalling. Moreover, miR-155 induces IL-22 expression and suppresses the C/EBPÎČ target IL-8. These data suggest that miR-155 can act as a tumour driver in ALCL ALK(-) and blocking miR-155 could be therapeutically relevant. Original miRNA array data are to be found in the supplementary material (Table S1).This work was supported by the SCRI-LIMCR GmbH, the “JubilĂ€umsfond der Österreichischen Nationalbank” (grant-no. 14856 to O.M.), R.G. was supported by grant SFB P021 from the Austrian Science Funds (FWF), L.K. was supported by grant FWF, P26011, R.M. was supported by FWF grants SFB F28 and SFB F47. S.D.T. is a Senior Lecturer supported with funding from Leukemia and Lymphoma Research.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/path.453

    Endostructural morphology in hominoid mandibular third premolars: discrete traits at the enamel-dentine junction

    Get PDF
    For access to specimens, we would like to thank Bernhard Zipfel, Lee Berger, Sifelani Jira (Evolutionary Studies Intitute, University of the Witwatersrand), Miriam Tawane (Ditsong Museum), Job Kibii (National Museums of Kenya), Metasebia Endalemaw, Yared Assefa (Ethiopian Authority for Research and Conservation of Cultural heritage), Yoel Rak, Alon Barash, Israel Hershkovitz (Sackler School of Medicine), Michel Toussaint (ASBL ArchĂ©ologie Andennaise, Jean-Jacques Cleyet-Merle (MusĂ©e National de PrĂ©histoire des Eyzies-de-Tayac), Ullrich Glasmacher (Institut fĂŒr Geowissenschaften, UniversitĂ€t Heidelberg), Robert Asher, Hendrik Turni, Irene Mann (Museum fĂŒr Naturkunde, Berlin), Jakov Radovčić (Croatian Natural History Museum), Christophe Boesch and Uta Schwarz (Max Planck Institute for Evolutionary Anthropology) and the Leipzig University Anatomical Collection (ULAC). For project support we thank Zeresenay Alemseged and Bill Kimbel. We would also like to thank the reviewers, the associate editor and the editor for their helpful comments and guidance, as well as Ottmar Kullmer for comments on an earlier version of this manuscript. This work was funded by the Max Planck Society, and financial support for L.K.D. was provided by a Connor Family Faculty Fellowship and the Office of Research and Development at the University of Arkansa

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment
    corecore