10 research outputs found

    Re-emergence of tularemia in Germany: Presence of <it>Francisella tularensis </it>in different rodent species in endemic areas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tularemia re-emerged in Germany starting in 2004 (with 39 human cases from 2004 to 2007) after over 40 years of only sporadic human infections. The reasons for this rise in case numbers are unknown as is the possible reservoir of the etiologic agent <it>Francisella (F.) tularensis</it>. No systematic study on the reservoir situation of <it>F. tularensis </it>has been published for Germany so far.</p> <p>Methods</p> <p>We investigated three areas six to ten months after the initial tularemia outbreaks for the presence of <it>F. tularensis </it>among small mammals, ticks/fleas and water. The investigations consisted of animal live-trapping, serologic testing, screening by real-time-PCR and cultivation.</p> <p>Results</p> <p>A total of 386 small mammals were trapped. <it>F. tularensis </it>was detected in five different rodent species with carrier rates of 2.04, 6.94 and 10.87% per trapping area. None of the ticks or fleas (n = 432) tested positive for <it>F. tularensis</it>. We were able to demonstrate <it>F. tularensis-</it>specific DNA in one of 28 water samples taken in one of the outbreak areas.</p> <p>Conclusion</p> <p>The findings of our study stress the need for long-term surveillance of natural foci in order to get a better understanding of the reasons for the temporal and spatial patterns of tularemia in Germany.</p

    Diversity of ABBA Prenyltransferases in Marine Streptomyces sp. CNQ-509: Promiscuous Enzymes for the Biosynthesis of Mixed Terpenoid Compounds.

    Get PDF
    Terpenoids are arguably the largest and most diverse family of natural products, featuring prominently in e.g. signalling, self-defence, UV-protection and electron transfer. Prenyltransferases are essential players in terpenoid and hybrid isoprenoid biosynthesis that install isoprene units on target molecules and thereby often modulate their bioactivity. In our search for new prenyltransferase biocatalysts we focused on the marine-derived Streptomyces sp. CNQ-509, a particularly rich source of meroterpenoid chemistry. Sequencing and analysis of the genome of Streptomyces sp. CNQ-509 revealed seven putative phenol/phenazine-specific ABBA prenyltransferases, and one putative indole-specific ABBA prenyltransferase. To elucidate the substrate specificity of the ABBA prenyltransferases and to learn about their role in secondary metabolism, CnqP1 -CnqP8 were produced in Escherichia coli and incubated with various aromatic and isoprenoid substrates. Five of the eight prenyltransferases displayed enzymatic activity. The efficient conversion of dihydroxynaphthalene derivatives by CnqP3 (encoded by AA958_24325) and the co-location of AA958_24325 with genes characteristic for the biosynthesis of THN (tetrahydroxynaphthalene)-derived natural products indicates that the enzyme is involved in the formation of debromomarinone or other naphthoquinone-derived meroterpenoids. Moreover, CnqP3 showed high flexibility towards a range of aromatic and isoprenoid substrates and thus represents an interesting new tool for biocatalytic applications

    Poxvirus infection in a cat with presumptive human transmission

    No full text
    The present report describes a case of generalized cowpox virus infection with necrotizing facial dermatitis in a cat and a likely transmission to an animal keeper. The viral aetiology was confirmed by histopathology, immunohistochemistry, PCR, virus isolation, DNA sequencing and electron microscopy. Histopathological examination of the cat’s skin revealed a severe, necrotizing dermatitis with ballooning degeneration and hyperplasia of epithelial cells with pathognomonic cytoplasmic eosinophilic inclusion bodies. Additionally, at post-mortem examination, a systemic poxvirus infection was detected affecting pancreas, thymus, lymph node, liver and lung. The human patient’s skin biopsy revealed an ulcerative dermatitis with epidermal hyperplasia and ballooning degeneration. Serological investigation displayed a high orthopoxvirus-specific antibody titre in the human patient. Environmental factors increase the natural reservoir host population for cowpox viruses, such as voles, which results in a higher risk of infection for cats and subsequently for humans. Due to this zoonotic potential, a cowpox virus infection must be considered as an aetiological differential in cases of necrotizing dermatitis in cats

    Complete Genome Sequence of Streptomyces sp. CNQ-509, a Prolific Producer of Meroterpenoid Chemistry

    No full text
    RĂĽckert C, Leipoldt F, Zeyhle P, et al. Complete Genome Sequence of Streptomyces sp. CNQ-509, a Prolific Producer of Meroterpenoid Chemistry. Journal of Biotechnology. 2015;216:140-141.: Streptomyces sp. CNQ-509 is a marine actinomycete belonging to the MAR4 streptomycete lineage. MAR4 strains have been linked to the production of diverse and otherwise rare meroterpenoid compounds. The genome sequence of Streptomyces sp. CNQ-509 was found to contain 29 putative gene clusters for the biosynthesis of secondary metabolites, some of them potentially involved in the formation of meroterpenoid molecules

    Phylogenetic tree of ABBA prenyltransferases of the phenol / phenazine family.

    No full text
    <p>Data include previously biochemically characterised ABBA prenyltransferases and those investigated in this study. The tree was constructed with MEGA6 using default parameter for multiple sequence alignment (CLUSTALW) and neighbour-joining method. Bootstrap values (in percent) calculated from 1000 replications are shown at the respective nodes. The fungal indole prenyltransferase DMATS (shares PT barrel) serves as a root.</p

    Minimum Information about a Biosynthetic Gene cluster

    Get PDF
    © 2015 Nature America, Inc. All rights reserved. A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard
    corecore