2,087 research outputs found

    Shifting sands: the narrative construction of early career aboriginal teachers' professional identities at the cultural interface

    Get PDF
    This study explores issues facing early career Aboriginal teachers as they construct and enact their personal, professional and situated identities when learning to teach. Narrative constructions of identity simultaneously illuminate and challenge dominant discourses about Aboriginal teachers as they take up, resist and/or reject these discourses. The role of Aboriginality is mediated by factors such as lived experience, positioning of and by the teachers and school contexts. These issues are explored through the theoretical perspectives of Foucault, Bourdieu and Nakata. Like shifting sands, identity construction and teaching work can be unstable terrain, requiring complex contextualised understandings, skills and dispositions. Participants are pre-service Aboriginal teachers in an away-from-base secondary Aboriginal Studies teacher education program at the University of Sydney. They are mature-aged with varying levels of experience of formal education and living in Aboriginal communities. Using narrative methodology, eleven in-depth conversational interviews followed by two focus groups revealed emerging storylines and themes and four participants were identified for further interviews to collaboratively construct the final narratives. This approach privileged participant voices and created spaces to articulate the tacit knowledge and understandings that contribute to the development of a professional identity drawn from personal, professional, cultural and contextual sources. Three themes emerged: discourses of Aboriginality, narratives of belonging, and conceptualising a pedagogical cultural identity. The implications of these themes bring focus to pre-service and in-service teacher professional learning based on valuing Aboriginal community engagement. When nurtured early in a teacher’s career, relationships serve a socio-cultural and political role that contribute significantly to the development of agentic and resilient identities at the cultural interface

    Iterative evolution of digitate planktonic foraminifera

    Get PDF
    Digitate shell morphologies have evolved repeatedly in planktonic foraminifera throughout the Cretaceous and Cenozoic. Digitate species are usually rare in fossil and modern assemblages but show increased abundance and diversity at times during the Cretaceous and mid- dle Eocene. In this paper we discuss the morphology and stratigraphic distribution of digitate planktonic foraminifera and establish the isotopic depth ecology of fossil ones to draw parallels with modern counterparts

    Timescale uncertainty of abrupt events in the geologic record arising from unsteady sedimentation

    Get PDF
    Defining the time scale of abrupt events in the stratigraphic record is a primary goal of high-resolution paleoclimate analysis. A significant hurdle in this endeavor is that abrupt, i.e., millennial and submillennial, events in deep time can rarely be temporally constrained accurately owing to the typical absence of high-precision age control at the scale of the events. Instead, the duration of abrupt events is commonly estimated via the linear partitioning of time between age control points (e.g., defined using astronomical cycles or radiometric dates) that bracket the event and span longer time intervals. The flaw with this approach is that sedimentation is an unsteady process and does not proceed linearly with time. Here a numerical model, parameterized by geologic data, is used to quantify theoretical time-scale uncertainties that result from unsteady sedimentation. This work demonstrates that the duration of assumed millennial events estimated via a linear partitioning approach may be significantly in error, even in complete, astronomically calibrated and unbioturbated successions best suited to the study of abrupt paleoclimate change. The uncertainties established in this study are largely a function of the precise statistical properties of the sedimentation process, properties that are difficult to constrain empirically, particularly over short time spans. Nevertheless, this study illustrates how unsteady sedimentation sets an important limit on the attainable temporal resolution of the stratigraphic record, with consequent implications for defining accurately the rates and durations of rapid events in Earth history

    Calcification and growth processes in planktonic foraminifera complicate the use of B/Ca and U/Ca as carbonate chemistry proxies

    Get PDF
    Although boron and uranium to calcium ratios (B/Ca, U/Ca) in planktonic foraminifera have recently received much attention as potential proxies for ocean carbonate chemistry, the extent of a carbonate chemistry control on these ratios remains contentious. Here, we use bi-weekly sediment trap samples collected from the subtropical North Atlantic in combination with measured oceanographic data from the same location to evaluate the dominant oceanographic controls on B/Ca and U/Ca in three depth-stratified species of planktonic foraminifera. We also test the control of biological, growth-related, processes on planktonic foraminiferal B and U incorporation by using foraminifer test area density (μg/μm2) (a monitor of test thickness) and test size from the same samples. B/Ca and U/Ca show little or no significant correlation with carbonate system parameters both within this study and in comparison with other published works. We provide the first evidence for a strong positive relationship between area density (test thickness) and B/Ca, and reveal that this is consistent in all species studied, suggesting a likely role for calcification in controlling boron partitioning into foraminiferal calcite. This finding is consistent with previous observations of less efficient discrimination against trace element ‘impurities’ (such as B), at higher calcification rates. We observe little or no dependency of B/Ca on test size. In marked contrast, we find that U/Ca displays a strong species-specific dependency on test size in all species, but no relationship with test thickness, implicating some other biological control (possibly related to growth), rather than a calcification control, on U incorporation into foraminiferal calcite. Our results caution against the use of B/Ca and U/Ca in planktonic foraminifera as reliable proxies for the ocean carbonate system and recommend that future work should concentrate on improving the mechanistic understanding of how planktonic foraminifer calcification and growth rates regulate boron and uranium incorporation into the test

    Episodes of intensified biological productivity in the subtropical Atlantic Ocean during the termination of the Middle Eocene Climatic Optimum (MECO)

    Get PDF
    The Middle Eocene Climatic Optimum (MECO) is an ~500 kyr interval of pronounced global warming from which the climate system recovered in <50 kyr. The deep-sea sedimentary record can provide valuable insight on the marine ecosystem response to this protracted global warming event and consequently on the ecological changes during this time. Here we present new benthic foraminiferal assemblage data from Ocean Drilling Program Site 1051 in the subtropical North Atlantic, spanning the MECO and post-MECO interval (41.1 to 39.5 Ma). We ␣nd little change in the species composition of benthic foraminiferal assemblages during the studied interval, suggesting that the rate of environmental change was gradual enough that these organisms were able to adapt. However, we identify two transient intervals associated with peak warming (higher-productivity interval (HPI)-1; 40.07–39.96 Ma) and shortly after the MECO (HPI-2; 39.68–39.55 Ma), where benthic foraminiferal accumulation rates increase by an order of magnitude. These HPIs at Site 1051 appear to coincide with intervals of strengthened productivity in the Tethys, Southern Ocean, and South Atlantic, and we suggest that an intensi␣ed hydrological cycle during the climatic warmth of the MECO was responsible for eutrophication of marine shelf and slope environments

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease.

    Get PDF
    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore