49 research outputs found

    Relations between the K_{l3} and tau --> K pi nu_tau decays

    Full text link
    We investigate the relations between the K_{l3} and tau --> K pi nu_tau decays using the meson dominance approach. First, the experimental branching fractions (BF) for K^-_{e3} and K^0_{e3} are used to fix two normalization constants (isospin invariance is not assumed). Then, the BF of tau^- --> K^*(892)^- nu_tau is calculated in agreement with experiment. We further argue that the nonzero value of the slope parameter lambda_0 of the K^-_{mu3} and K^0_{mu3} form factors f_0(t) implies the existence of the tau^- --> K_0^*(1430)^- nu_tau decay. We calculate its BF, together with BF's of the K^-_{mu3}, K^0_{mu3}, tau- --> K^- pi^0 nu_tau, and tau- --> antiK^0 pi^0 nu_tau decays, as a function of the lambda_0 parameter. At some value of lambda_0, different for charged and neutral kaons, calculated BF's seem to match existing data and a prediction is obtained for the tau^- --> K pi nu decays going through the K_0^*(1430)^- resonance.Comment: 14 pages, RevTeX, epsf.sty, 3 embedded figure

    On a possible new R^2 theory of supergravity

    Get PDF
    We consider a new MacDowell-Mansouri R^2-type of supergravity theory, an extension of conformal supergravity, based on the superalgebra Osp(1|8). Invariance under local symmetries with negative Weyl weight is achieved by imposing chirality-duality and double-duality constraints on curvatures, along with the usual constraint of vanishing supertorsion. An analysis of the remaining gauge symmetries shows that those with vanishing Weyl weight are invariances of the action at the linearized level. For the symmetries with positive Weyl weight we find that invariance of the action would require further modifications of the transformation rules. This conclusion is supported by a kinematical analysis of the closure of the gauge algebra.Comment: 52 pages, Late

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Reduced Diaphyseal Strength Associated with High Intracortical Vascular Porosity within Long Bones of Children with Osteogenesis Imperfecta

    Get PDF
    Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64–68% lower in the transverse vs. longitudinal beams (P \u3c 0.001, linear mixed model). Vascular porosity ranged between 3 and 42% of total bone volume. Longitudinal properties were associated negatively with porosity (P ≤ 0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P ≥ 0.167). Bone properties and structural parameters were not associated significantly with donor age (P ≥ 0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta

    Enhanced hydrogen production from thermochemical processes

    Get PDF
    To alleviate the pressing problem of greenhouse gas emissions, the development and deployment of sustainable energy technologies is necessary. One potentially viable approach for replacing fossil fuels is the development of a H2 economy. Not only can H2 be used to produce heat and electricity, it is also utilised in ammonia synthesis and hydrocracking. H2 is traditionally generated from thermochemical processes such as steam reforming of hydrocarbons and the water-gas-shift (WGS) reaction. However, these processes suffer from low H2 yields owing to their reversible nature. Removing H2 with membranes and/or extracting CO2 with solid sorbents in situ can overcome these issues by shifting the component equilibrium towards enhanced H2 production via Le Chatelier's principle. This can potentially result in reduced energy consumption, smaller reactor sizes and, therefore, lower capital costs. In light of this, a significant amount of work has been conducted over the past few decades to refine these processes through the development of novel materials and complex models. Here, we critically review the most recent developments in these studies, identify possible research gaps, and offer recommendations for future research

    How ice grows from premelting films and water droplets

    Get PDF
    Close to the triple point, the surface of ice is covered by a thin liquid layer (so-called quasi-liquid layer) which crucially impacts growth and melting rates. Experimental probes cannot observe the growth processes below this layer, and classical models of growth by vapor deposition do not account for the formation of premelting films. Here, we develop a mesoscopic model of liquid-film mediated ice growth, and identify the various resulting growth regimes. At low saturation, freezing proceeds by terrace spreading, but the motion of the buried solid is conveyed through the liquid to the outer liquid-vapor interface. At higher saturations water droplets condense, a large crater forms below, and freezing proceeds undetectably beneath the droplet. Our approach is a general framework that naturally models freezing close to three phase coexistence and provides a first principle theory of ice growth and melting which may prove useful in the geosciences.Comment: 32 pages, 10 figure

    El intrigante lazo de Van der Waals

    No full text
    corecore