102 research outputs found

    Psychology

    Get PDF
    Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.https://commons.erau.edu/oer-textbook/1000/thumbnail.jp

    Affect and memory in young children

    Full text link
    The state-dependent theory of the relationship between affective states and memory holds that recall will be best when the affective state at recall matches that during learning. Sequential happy, neutral, and sad affective states that were either consistent (e.g., Happy-Happy) or inconsistent (e.g., Sad-Neutral) were experimentally induced in preschool children prior to encoding and then again prior to retrieval (free and cued recall, recognition memory). Facial ratings indicated that the inductions were effective in inducing affect. Nevertheless, emotional states did not influence children's ability to recall items under free or cued conditions, and recognition memory was essentially perfect for all subjects. Thus, there was no evidence for state-dependent learning or for a “positive loop” between subjects' positive affect at retrieval and memory for positively rated information. Results are discussed in terms of the generally inconsistent findings in the literature on the role of affect in children's memory and factors that may limit affective state-dependent learning in children.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45375/1/11031_2004_Article_BF00992208.pd

    A Catalog of Near Infrared Spectra from Type Ia Supernovae

    Full text link
    We present forty-one near infrared (NIR, 0.7-2.5 microns) spectra from normal Type Ia supernovae (SNe Ia) obtained at epochs ranging from fourteen days before to seventy-five days with respect to the maximum light date in the V-band. All data were obtained at the IRTF using the SpeX instrument. We identify many spectral features, measure the Doppler velocities, and discuss the chemical distribution of explosion products in SNe Ia. We describe procedures for smoothing data, fitting continua, and measuring absorption features to insure consistency for measurement and analysis. This sample provides the first opportunity to examine and compare a large number of SNe Ia in this wavelength region. NIR data are a rich source of information about explosion products whose signatures are blended or obscured in other spectral regions and NIR observations probe a greater radial depth than optical wavelengths. We analyze similarities and differences in the spectra and we show that the progressive development of spectral features for normal SNe Ia in the NIR is consistent with time. Measured Doppler velocities indicate that burning products in SNe Ia are distributed in distinct layers with no large scale mixing. Carbon is not detected in these data, in agreement with previous results with NIR data establishing very low limits on carbon abundance in SNe Ia. Carbon burning products, O and Mg, are plentiful in the outer layers suggesting that the entire progenitor is burned in the explosion. The data provide a resource for investigations of cross-correlations with other data libraries that may further constrain SN Ia physics and improve the effectiveness of SNe Ia as cosmological distance indicators.Comment: Accepted to The Astronomical Journal: 81 pages, 6 tables, 21 figure

    Spectropolarimetry of Extremely Luminous Type Ia Supernova 2009dc: Nearly Spherical Explosion of Super-Chandrasekhar Mass White Dwarf

    Full text link
    We present the first spectropolarimetric observations of a candidate of super-Chandrasekhar mass Type Ia supernova (SN): SN 2009dc. The observations were performed at 5.6 and 89.5 days after the B-band maximum. The data taken at the later epoch are used to determine the interstellar polarization. Continuum polarization is found to be small (<0.3 %), indicating that the explosion is nearly spherically symmetric. This fact suggests that a very aspherical explosion is not a likely scenario for SN 2009dc. Polarization at the Si II and Ca II lines clearly shows a loop in the Q-U plane, indicating a non-axisymmetric, clumpy distribution of intermediate-mass elements. The degree of line polarization at the Si and Ca line is moderate (0.5% +- 0.1% and 0.7% +- 0.1%, respectively), but it is higher than expected from the trend of other Type Ia SNe. This may suggest that there are thick enough, clumpy Si-rich layers above the thick 56Ni-rich layers (>~ 1.2 Msun). The observed spectropolarimetric properties, combined with the photometric and spectroscopic properties, suggest that the progenitor of SN 2009dc has a super-Chandrasekhar mass, and that the explosion geometry is globally spherically symmetric, with clumpy distribution of intermediate-mass elements.Comment: 9 pages, 6 figures, The Astrophysical Journal, in pres

    The kinematics and chemical stratification of the Type Ia supernova remnant 0519-69.0

    Full text link
    We present an analysis of the XMM-Newton and Chandra X-ray data of the young Type Ia supernova remnant 0519-69.0 in the Large Magellanic Cloud. We used data from both the Chandra ACIS and XMM-Newton EPIC-MOS instruments, and high resolution X-ray spectra obtained with the XMM-Newton Reflection Grating Spectrometer. The Chandra data show that there is a radial stratification of oxygen, intermediate mass elements and iron, with the emission from more massive elements more toward the center. Using a deprojection technique we measure a forward shock radius of 4.0(3) pc and a reverse shock radius of 2.7(4) pc. We took the observed stratification of the shocked ejecta into account in the modeling of the X-ray spectra with multi-component NEI models, with the components corresponding to layers dominated by one or two elements. An additional component was added in order to represent the ISM, which mostly contributed to the continuum emission. This model fits the data well, and was also employed to characterize the spectra of distinct regions extracted from the Chandra data. From our spectral analysis we find that the fractional masses of shocked ejecta for the most abundant elements are: M(O)=32%, M(Si/S)=7%/5%, M(Ar+Ca)=1%, and M(Fe) = 55%. From the continuum component we derive a circumstellar density of nH= 2.4(2)/cm^3. This density, together with the measurements of the forward and reverse shock radii suggest an age of 450+/-200 yr,somewhat lower than, but consistent with the estimate based on the optical light echo (600+/-200 yr). From the RGS spectra we measured a Doppler broadening of sigma=1873+/-50 km/s, from implying a forward shock velocity of vS = 2770+/-500 km/s. We discuss the results in the context of single degenerate explosion models, using semi-analytical and numerical modeling, and compare the characteristics of 0519-69.0 with those of other Type Ia supernova remnants.Comment: Astronomy and Astrophysics in press. This version is the A&A accepted version, which contains improved figures and an extended discussion sectio

    Abundance stratification in Type Ia supernovae - III. The normal SN 2003du

    Full text link
    The element abundance distributions in the ejecta of Type Ia supernova (SN) is studied by modelling a time series of optical spectra of SN 2003du until ~1 year after the explosion. Since SN 2003du is a very normal Type Ia SN both photometrically and spectroscopically, the abundance distribution derived for it can be considered as representative of normal Type Ia SNe. We find that the innermost layers are dominated by stable Fe-group elements, with a total mass of ~ 0.2 Msun, which are synthesized through electron capture. Above the core of stable elements there are thick 56Ni-rich layers. The total mass of 56Ni is 0.65 Msun. The Si- and S-rich layers are located above the 56Ni-rich layers. The dominant element in the outermost layers (M_r > 1.1 Msun, v > 13000 km/s) is O, with a small amount of Si. Little unburned C remains, with an upper limit of 0.016 Msun. The element distributions in the ejecta are moderately mixed, but not fully mixed as seen in three-dimensional deflagration models.Comment: 15 pages, 11 figures, Accepted for publication in MNRA

    Carbon Detection in Early-Time Optical Spectra of Type Ia Supernovae

    Full text link
    While O is often seen in spectra of Type Ia supernovae (SNe Ia) as both unburned fuel and a product of C burning, C is only occasionally seen at the earliest times, and it represents the most direct way of investigating primordial white dwarf material and its relation to SN Ia explosion scenarios and mechanisms. In this paper, we search for C absorption features in 188 optical spectra of 144 low-redshift (z < 0.1) SNe Ia with ages <3.6 d after maximum brightness. These data were obtained as part of the Berkeley SN Ia Program (BSNIP; Silverman et al. 2012) and represent the largest set of SNe Ia in which C has ever been searched. We find that ~11 per cent of the SNe studied show definite C absorption features while ~25 per cent show some evidence for C II in their spectra. Also, if one obtains a spectrum at t < -5 d, then there is a better than 30 per cent chance of detecting a distinct absorption feature from C II. SNe Ia that show C are found to resemble those without C in many respects, but objects with C tend to have bluer optical colours than those without C. The typical expansion velocity of the C II {\lambda}6580 feature is measured to be 12,000-13,000 km/s, and the ratio of the C II {\lambda}6580 to Si II {\lambda}6355 velocities is remarkably constant with time and among different objects with a median value of ~1.05. While the pseudo-equivalent widths (pEWs) of the C II {\lambda}6580 and C II {\lambda}7234 features are found mostly to decrease with time, we see evidence of a significant increase in pEW between ~12 and 11 d before maximum brightness, which is actually predicted by some theoretical models. The range of pEWs measured from the BSNIP data implies a range of C mass in SN Ia ejecta of about (2-30) * 10^-3 M_Sun.Comment: 20 pages, 11 figures, 4 tables, revised version re-submitted to MNRA

    Fourteen Months of Observations of the Possible Super-Chandrasekhar Mass Type Ia Supernova 2009dc

    Full text link
    In this paper, we present and analyse optical photometry and spectra of the extremely luminous and slowly evolving Type Ia supernova (SN Ia) 2009dc, and offer evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus had a SC white dwarf (WD) progenitor. Optical spectra of SN 2007if, a similar object, are also shown. SN 2009dc had one of the most slowly evolving light curves ever observed for a SN Ia, with a rise time of ~23 days and Delta m_15(B) = 0.72 mag. We calculate a lower limit to the peak bolometric luminosity of ~2.4e43 erg/s, though the actual value is likely almost 40% larger. Optical spectra of SN 2009dc and SN 2007if obtained near maximum brightness exhibit strong C II features (indicative of a significant amount of unburned material), and the post-maximum spectra are dominated by iron-group elements. All of our spectra of SN 2009dc and SN 2007if also show low expansion velocities. However, we see no strong evidence in SN 2009dc for a velocity "plateau" near maximum light like the one seen in SN 2007if (Scalzo et al. 2010). The high luminosity and low expansion velocities of SN 2009dc lead us to derive a possible WD progenitor mass of more than 2 M_Sun and a Ni-56 mass of about 1.4-1.7 M_Sun. We propose that the host galaxy of SN 2009dc underwent a gravitational interaction with a neighboring galaxy in the relatively recent past. This may have led to a sudden burst of star formation which could have produced the SC WD progenitor of SN 2009dc and likely turned the neighboring galaxy into a "post-starburst galaxy." No published model seems to match the extreme values observed in SN 2009dc, but simulations do show that such massive progenitors can exist (likely as a result of the merger of two WDs) and can possibly explode as SC SNe Ia.Comment: 30 pages, 16 figures, 8 tables, re-submitted to MNRA

    Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program

    Full text link
    Shifting the focus of Type Ia supernova (SN Ia) cosmology to the near-infrared (NIR) is a promising way to significantly reduce the systematic errors, as the strategy minimizes our reliance on the empirical width-luminosity relation and uncertain dust laws. Observations in the NIR are also crucial for our understanding of the origins and evolution of these events, further improving their cosmological utility. Any future experiments in the rest-frame NIR will require knowledge of the SN Ia NIR spectroscopic diversity, which is currently based on a small sample of observed spectra. Along with the accompanying paper, Phillips et al. (2018), we introduce the Carnegie Supernova Project-II (CSP-II), to follow up nearby SNe Ia in both the optical and the NIR. In particular, this paper focuses on the CSP-II NIR spectroscopy program, describing the survey strategy, instrumental setups, data reduction, sample characteristics, and future analyses on the data set. In collaboration with the Harvard-Smithsonian Center for Astrophysics (CfA) Supernova Group, we obtained 661 NIR spectra of 157 SNe Ia. Within this sample, 451 NIR spectra of 90 SNe Ia have corresponding CSP-II follow-up light curves. Such a sample will allow detailed studies of the NIR spectroscopic properties of SNe Ia, providing a different perspective on the properties of the unburned material, radioactive and stable nickel produced, progenitor magnetic fields, and searches for possible signatures of companion stars.Comment: 20 pages, 7 figures, accepted for publication in PAS
    • …
    corecore