1,124 research outputs found

    Solar radiation forecasting using ad-hoc time series preprocessing and neural networks

    Full text link
    In this paper, we present an application of neural networks in the renewable energy domain. We have developed a methodology for the daily prediction of global solar radiation on a horizontal surface. We use an ad-hoc time series preprocessing and a Multi-Layer Perceptron (MLP) in order to predict solar radiation at daily horizon. First results are promising with nRMSE < 21% and RMSE < 998 Wh/m2. Our optimized MLP presents prediction similar to or even better than conventional methods such as ARIMA techniques, Bayesian inference, Markov chains and k-Nearest-Neighbors approximators. Moreover we found that our data preprocessing approach can reduce significantly forecasting errors.Comment: 14 pages, 8 figures, 2009 International Conference on Intelligent Computin

    Intrinsic decoherence and classical-quantum correspondence in two coupled delta-kicked rotors

    Get PDF
    We show that classical-quantum correspondence of center of mass motion in two coupled delta-kicked rotors can be obtained from intrinsic decoherence of the system itself which occurs due to the entanglement of the center of mass motion to the internal degree of freedom without coupling to external environment

    Electroweak radiative corrections to the three channels of the process f_1 bar-f_1 ZA --> 0

    Full text link
    We have calculated the electroweak radiative corrections at the O(alpha) level to the three channels of the process f_1 bar-f_1 Z A --> 0 and implemented them into the SANC system. Here A stands for the photon and f_1 for a first generation fermion whose mass is neglected everywhere except in arguments of logarithmic functions. The symbol --> 0 means that 4-momenta of all the external particles flow inwards. We present the complete analytical results for the covariant and helicity amplitudes for three cross channels: f_1 + bar-f_1 --> Z + gamma, Z --> f_1 + bar-f_1 + gamma and f_1 + gamma --> f_1 + Z. The one-loop scalar form factors of these channels are simply related by an appropriate permutation of their arguments s,t,u. To check the correctness of our results we first of all observe the independence of the scalar form factors on the gauge parameters and the validity of the Ward identity, i.e. external photon transversality, and, secondly, compare our numerical results with the other independent calculations available to us.Comment: 19 pages, 6 figures, 10 table

    Gauge Theories on a 2+2 Anisotropic Lattice

    Get PDF
    The implementation of gauge theories on a four-dimensional anisotropic lattice with two distinct lattice spacings is discussed, with special attention to the case where two axes are finely and two axes are coarsely discretized. Feynman rules for the Wilson gauge action are derived and the renormalizability of the theory and the recovery of the continuum limit are analyzed. The calculation of the gluon propagator and the restoration of Lorentz invariance in on-shell states is presented to one-loop order in lattice perturbation theory for SU(Nc)SU(N_c) on both 2+2 and 3+1 lattices.Comment: 27 pages, uses feynmf. Font compatibility adjuste

    Endoglin and MMP14 contribute to Ewing sarcoma spreading by modulation of cell-matrix interactions

    Get PDF
    Endoglin (ENG) is a mesenchymal stem cell (MSC) marker typically expressed by active endothelium. This transmembrane glycoprotein is shed by matrix metalloproteinase 14 (MMP14). Our previous work demonstrated potent preclinical activity of first-in-class anti-ENG antibody-drug conjugates as a nascent strategy to eradicate Ewing sarcoma (ES), a devastating rare bone/soft tissue cancer with a putative MSC origin. We also defined a correlation between ENG and MMP14 expression in ES. Herein, we show that ENG expression is significantly associated with a dismal prognosis in a large cohort of ES patients. Moreover, both ENG/MMP14 are frequently expressed in primary ES tumors and metastasis. To deepen in their functional relevance in ES, we conducted transcriptomic and proteomic profiling of in vitro ES models that unveiled a key role of ENG and MMP14 in cell mechano-transduction. Migration and adhesion assays confirmed that loss of ENG disrupts actin filament assembly and filopodia formation, with a concomitant effect on cell spreading. Furthermore, we observed that ENG regulates cell-matrix interaction through activation of focal adhesion signaling and protein kinase C expression. In turn, loss of MMP14 contributed to a more adhesive phenotype of ES cells by modulating the transcriptional extracellular matrix dynamics. Overall, these results suggest that ENG and MMP14 exert a significant role in mediating correct spreading machinery of ES cells, impacting the aggressiveness of the disease.E.A.’s laboratory is supported by ISCIII-FEDER (PI20/00003), CIBERONC (CB16/12/00361), PAIDI-Junta de AndalucĂ­a (P18-RT-735), FundaciĂłn CRIS Contra el CĂĄncer, AsociaciĂłn Candela Riera and AsociaciĂłn Pablo Ugarte. A.T.A. is supported by Juan de la Cierva IncorporaciĂłn fellowship (IJC-2018-036767-I); P.P.-C. is sponsored by the FundaciĂłn MarĂ­a GarcĂ­a Estrada. J.O.-P is supported by Ph.D. Grant Plan Propio from the University of Seville. J.D.-M is supported by CIBERONC (CB16/12/00361). C.S.-A. is supported by the European Social Fund and the Junta de AndalucĂ­a (Talento Doctores 2020, DOC_01473). This work was supported by grants from the ConsejerĂ­a de Salud (Junta de AndalucĂ­a, grants No PI-0036-2017, PI-0040-2017, and PI-0061-2020) awarded to J.D.-M, A.T.A. and C. S.-A., respectively. This work was also supported by the GEIS-FundaciĂłn Mari Paz JimĂ©nez Casado (IV beca trienal) granted to J.D.-M, the 13ÂȘ GEIS-Beca Buesa granted to A.T.A. and CRIS (Cancer Research Innovation Spain) granted to J.D.-M and E.A. The laboratory of T.G.P.G. is supported by the Barbara and Wilfried Mohr Foundation. The lab of J.A. is supported by the Instituto de Salud Carlos III (ISCIII), grant number PI20CIII/00020; AsociaciĂłn Pablo Ugarte, grant numbers TRPV205/18, TPI-M 1149/13; AsociaciĂłn Candela Riera; AsociaciĂłn Todos Somos IvĂĄn & FundaciĂłn Sonrisa de Alex, grant reference: TVP333-19.S

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure

    Genome‐Wide Association Study for Nine Plant Architecture Traits in Sorghum

    Get PDF
    Sorghum [ (L) Moench], an important grain and forage crop, is receiving significant attention as a lignocellulosic feedstock because of its water-use efficiency and high biomass yield potential. Because of the advancement of genotyping and sequencing technologies, genome-wide association study (GWAS) has become a routinely used method to investigate the genetic mechanisms underlying natural phenotypic variation. In this study, we performed a GWAS for nine grain and biomass-related plant architecture traits to determine their overall genetic architecture and the specific association of allelic variants in gibberellin (GA) biosynthesis and signaling genes with these phenotypes. A total of 101 single-nucleotide polymorphism (SNP) representative regions were associated with at least one of the nine traits, and two of the significant markers correspond to GA candidate genes, () and (), affecting plant height and seed number, respectively. The resolution of a previously reported quantitative trait loci (QTL) for leaf angle on chromosome 7 was increased to a 1.67 Mb region containing seven candidate genes with good prospects for further investigation. This study provides new knowledge of the association of GA genes with plant architecture traits and the genomic regions controlling variation in leaf angle, stem circumference, internode number, tiller number, seed number, panicle exsertion, and panicle length. The GA gene affecting seed number variation () and the genomic region on chromosome 7 associated with variation in leaf angle are also important outcomes of this study and represent the foundation of future validation studies needed to apply this knowledge in breeding programs

    Improved constraints on the expansion rate of the Universe up to z~1.1 from the spectroscopic evolution of cosmic chronometers

    Get PDF
    We present new improved constraints on the Hubble parameter H(z) in the redshift range 0.15 < z < 1.1, obtained from the differential spectroscopic evolution of early-type galaxies as a function of redshift. We extract a large sample of early-type galaxies (\sim11000) from several spectroscopic surveys, spanning almost 8 billion years of cosmic lookback time (0.15 < z < 1.42). We select the most massive, red elliptical galaxies, passively evolving and without signature of ongoing star formation. Those galaxies can be used as standard cosmic chronometers, as firstly proposed by Jimenez & Loeb (2002), whose differential age evolution as a function of cosmic time directly probes H(z). We analyze the 4000 {\AA} break (D4000) as a function of redshift, use stellar population synthesis models to theoretically calibrate the dependence of the differential age evolution on the differential D4000, and estimate the Hubble parameter taking into account both statistical and systematical errors. We provide 8 new measurements of H(z) (see Tab. 4), and determine its change in H(z) to a precision of 5-12% mapping homogeneously the redshift range up to z \sim 1.1; for the first time, we place a constraint on H(z) at z \neq 0 with a precision comparable with the one achieved for the Hubble constant (about 5-6% at z \sim 0.2), and covered a redshift range (0.5 < z < 0.8) which is crucial to distinguish many different quintessence cosmologies. These measurements have been tested to best match a \Lambda CDM model, clearly providing a statistically robust indication that the Universe is undergoing an accelerated expansion. This method shows the potentiality to open a new avenue in constrain a variety of alternative cosmologies, especially when future surveys (e.g. Euclid) will open the possibility to extend it up to z \sim 2.Comment: 34 pages, 15 figures, 6 tables, published in JCAP. It is a companion to Moresco et al. (2012b, http://arxiv.org/abs/1201.6658) and Jimenez et al. (2012, http://arxiv.org/abs/1201.3608). The H(z) data can be downloaded at http://www.physics-astronomy.unibo.it/en/research/areas/astrophysics/cosmology-with-cosmic-chronometer

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
    • 

    corecore