2,715 research outputs found

    Low-Cost Assessment of User eXperience Through EEG Signals

    Get PDF
    EEG signals are an important tool for monitoring the brain activity of a person, but equipment, expertise and infrastructure are required. EEG technologies are generally expensive, thus few people are normally able to use them. However, some low-cost technologies are now available. One of these is OPENBCI, but it seems that it is yet to be widely employed in Human-Computer Interaction. In this study, we used OPENBCI technology to capture EEG signals linked to brain activity in ten subjects as they interacted with two video games: Candy Crush and Geometry Dash. The experiment aimed to capture the signals while the players interacted with the video games in several situations. The results show differences due to the absence/presence of sound; players appear to be more relaxed without sound. In addition, consistent analysis of the EEG data, meCue 2.0 and SAM data showed high consistency. The evidence demonstrates that interesting results are able to be gathered based on low-cost EEG (standard) signal-based technologies

    The Leishmania amazonensis TRF (TTAGGG repeat-binding factor) homologue binds and co-localizes with telomeres

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomeres are specialized structures at the end of chromosomes essential for maintaining genome stability and cell viability. The importance of telomeric proteins for telomere maintenance has increased our interest in the identification of homologues within the genus <it>Leishmania</it>. The mammalian TRF1 and TRF2 proteins, for example, bind double-stranded telomeres via a Myb-like DNA-binding domain and are involved with telomere length regulation and chromosome end protection. In addition, TRF2 can modulate the activity of several enzymes and influence the conformation of telomeric DNA. In this work, we identified and characterized a <it>Leishmania </it>protein (LaTRF) homologous to both mammalian TRF1 and TRF2.</p> <p>Results</p> <p>LaTRF was cloned using a PCR-based strategy. ClustalW and bl2seq sequence analysis showed that LaTRF shared sequence identity with the <it>Trypanosoma brucei </it>TRF (TbTRF) protein and had the same degree of sequence similarities with the dimerization (TRFH) and the canonical DNA-binding Myb-like domains of both mammalian TRFs. LaTRF was predicted to be an 82.5 kDa protein, indicating that it is double the size of the trypanosome TRF homologues. Western blot and indirect immunofluorescence combined with fluorescence <it>in situ </it>hybridization showed that LaTRF, similarly to hTRF2, is a nuclear protein that also associates with parasite telomeres. Native and full length LaTRF and a mutant bearing the putative Myb-like domain expressed in bacteria bound double-stranded telomeric DNA <it>in vitro</it>. Chromatin immunoprecipitation showed that LaTRF interacted specifically with telomeres <it>in vivo</it>.</p> <p>Conclusion</p> <p>The nuclear localization of LaTRF, its association and co-localization with parasite telomeres and its high identity with TbTRF protein, support the hypothesis that LaTRF is a <it>Leishmania </it>telomeric protein.</p

    Total Absorption Spectroscopy Study of 92^{92}Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    Full text link
    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. 92^{92}Rb makes the dominant contribution to the reactor spectrum in the 5-8 MeV range but its decay properties are in question. We have studied 92^{92}Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.Comment: 6 pages, 3 figure

    Proyecto PREDIRCAM 2. Análisis preliminar de uso y valoración de la plataforma

    Get PDF
    En la actualidad, la prevalencia de las enfermedades no transmisibles (Non-communicable diseases NCD) y la cantidad de muertes causadas por éstas es muy elevada, en su mayoría, consecuencia del envejecimiento de la población, el aumento de la obesidad y los hábitos de vida sedentarios. En este trabajo se describen el funcionamiento y los resultados preliminares del proyecto Predircam 2, destinado al desarrollo y validación de una plataforma inteligente de tecnologías biomédicas para la monitorización, prevención y tratamiento personalizados del sobrepeso, la obesidad y la prevención de enfermedades asociadas como la diabetes, hipertensión arterial o alteraciones del metabolismo lipídico. El objetivo de este trabajo es presentar los resultados preliminares del análisis del uso de la plataforma, la evaluación de la usabilidad y la valoración de la atención recibida por los pacientes en relación a los profesionales sanitarios

    Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries

    Get PDF
    Effective therapy for chronic radiation injuries, such as ulcers, is prone to infection. Stiffness is expected since the therapeutic radiation often involves wider and deeper tissues and often requires extensive debridement and reconstruction, which are not sometimes appropriate for elderly and compromised hosts. Autologous adipose-derived regenerative cells (ADRCs) are highly yielding, forming relatively elderly aged consecutive 10 cases, 63.6±14.9 y (52-89 y), with mean radiation dose of 75.0±35.4 Gy (50-120 Gy) were included with at least 10-month follow-up. Minimal debridement and ADRC injection in the wound bed and margin along with the injection of mixture of fat and ADRCs in the periphery were tested for efficacy and regenerated tissue quality by clinically as well as imaging by computed tomography and magnetic resonance imaging. Uncultured ADRCs of 1.6±1.3×10. 7 cells were obtained. All cases healed uneventfully after 6.6±3.2 weeks (2-10 weeks) post-operatively. The done site morbidity was negligible and without major complications, such as paralysis or massive haematoma. The regenerated tissue quality was significantly superior to the pre-operative one and the mixture of fat and ADRCs connected to the intact tissue was very soft and pliable. Mean follow-up at 1.9±0.8 y (0.9-2.9 y) revealed no recurrence or new ulceration after treatment. Thus, the ADRCs treatment for decades-long radiation injuries is effective, safe and improves the quality of wounds

    Insulin-like growth factor II prevents oxidative and neuronal damage in cellular and mice models of Parkinson's disease

    Get PDF
    Oxidative distress and mitochondrial dysfunction, are key factors involved in the pathophysiology of Parkinson's disease (PD). The pleiotropic hormone insulin-like growth factor II (IGF-II) has shown neuroprotective and antioxidant effects in some neurodegenerative diseases. In this work, we demonstrate the protective effect of IGF-II against the damage induced by 1-methyl-4-phenylpyridinium (MPP+) in neuronal dopaminergic cell cultures and a mouse model of progressive PD. In the neuronal model, IGF-II counteracts the oxidative distress produced by MPP + protecting dopaminergic neurons. Improved mitochondrial function, increased nuclear factor (erythroid-derived 2)-like2 (NRF2) nuclear translocation along with NRF2-dependent upregulation of antioxidative enzymes, and modulation of mammalian target of rapamycin (mTOR) signalling pathway were identified as mechanisms leading to neuroprotection and the survival of dopaminergic cells. The neuroprotective effect of IGF-II against MPP + -neurotoxicity on dopaminergic neurons depends on the specific IGF-II receptor (IGF-IIr). In the mouse model, IGF-II prevents behavioural dysfunction and dopaminergic nigrostriatal pathway degeneration and mitigates neuroinflammation induced by MPP+. Our work demonstrates that hampering oxidative stress and normalising mitochondrial function through the interaction of IGF-II with its specific IGF-IIr are neuroprotective in both neuronal and mouse models. Thus, the modulation of the IGF-II/IGF-IIr signalling pathway may be a useful therapeutic approach for the prevention and treatment of PD

    SPOT-Seq-RNA: Predicting protein-RNA complex structure and RNA-binding function by fold recognition and binding affinity prediction

    Get PDF
    RNA-binding proteins (RBPs) play key roles in RNA metabolism and post-transcriptional regulation. Computational methods have been developed separately for prediction of RBPs and RNA-binding residues by machine-learning techniques and prediction of protein-RNA complex structures by rigid or semiflexible structure-to-structure docking. Here, we describe a template-based technique called SPOT-Seq-RNA that integrates prediction of RBPs, RNA-binding residues, and protein-RNA complex structures into a single package. This integration is achieved by combining template-based structure-prediction software, SPARKS X, with binding affinity prediction software, DRNA. This tool yields reasonable sensitivity (46 %) and high precision (84 %) for an independent test set of 215 RBPs and 5,766 non-RBPs. SPOT-Seq-RNA is computationally efficient for genome-scale prediction of RBPs and protein-RNA complex structures. Its application to human genome study has revealed a similar sensitivity and ability to uncover hundreds of novel RBPs beyond simple homology. The online server and downloadable version of SPOT-Seq-RNA are available at http://sparks-lab.org/server/SPOT-Seq-RNA/

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented
    corecore