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Summary
RNA-binding proteins (RBPs) play key roles in RNA metabolism and post-transcriptional
regulation. Computational methods have been developed separately for prediction of RNA-
binding proteins and RNA-binding residues by machine learning techniques and prediction of
protein-RNA complex structures by rigid or semi-flexible structure-to-structure docking. Here, we
describe a template-based technique called SPOT-Seq-RNA that integrates prediction of RNA-
binding proteins, RNA-binding residues, and protein-RNA complex structures into a single
package. This integration is achieved by combining template-based structure-prediction software,
SPARKS X, with binding-affinity prediction software, DRNA. This tool yields reasonable
sensitivity (46%) and high precision (84%) for an independent test set of 215 RBPs and 5766 non-
RBPs. SPOT-Seq-RNA is computationally efficient for genome-scale prediction of RNA-binding
proteins and protein-RNA complex structures. Its application to human genome study has revealed
a similar sensitivity and ability to uncover hundreds of novel RBPs beyond simple homology. The
online server and downloadable version of SPOT-Seq-RNA are available at http://
sparks.informatics.iupui.edu/server/SPOT-Seq-RNA/

1The query sequence must be a protein sequence in FASTA format. The gene in the DNA/RNA sequence has to be converted to
amino acids sequence first. Unknown amino acids (e.g. X) must be removed.
3Here unaligned residues and the side-chain atoms except Cβ atoms are excluded for interaction calculations so that we can prevent
large fluctuation in predicted binding affinities due to possible atomic clashes between RNA and modeled side-chains or modeled
missing residues. A new version is in progress to relax modeled side-chain and missing residues so that we can estimate the protein-
RNA binding affinity based on all interactions between protein and RNA molecules.
6The running time depends on the size of the query protein. For the example given here (1zbiB, 136 residues), it takes 22 minutes on
an Intel Pentium 4 3.4GHz, in which 14 minutes are due to PSI-BLAST.
7For online service, the results can be obtained from the webpage directly or from email if an email address is given. To save
computing resources, please do not submit query sequences more than once. The status of your job can be found by clicking the link
"Check the current Queue to prevent DUPLICATE submits" on the main webpage. The result of your job will only be kept for one
month after completion.
8The recent blast package can be downloaded from: ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/. Select the
appropriate executable version for your system (e.g. blast-2.2.26-x64-linux.tar.gz for 64 bit Linux). The NR database can be
downloaded from ftp://ftp.ncbi.nih.gov/blast/db/nr.XX.tar.gz. As of Feb. 23, 2013, XX includes 10 numbers from 00 to 09, and each
file is about 700 megabytes.
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1 Introduction
The majority of the human genome is coded for RNA transcripts. Only tiny fractions of
these RNA transcripts are messenger RNAs that code for proteins. All RNA transcripts,
most with unknown functions, are regulated by RNA-binding proteins from birth
(transcription) to death (degradation). Thus, locating all RNA-binding proteins (RBPs) in a
genome and determining protein-RNA complex structures are key steps for understanding
the mechanism of post-transcriptional regulation and for mapping the network of protein-
RNA interactions.

It is difficult to locate RBPs and determine their protein-RNA complex structures
experimentally due to high flexibility of RNA structures and the difficulty associated with
crystallization of complex structures. Despite this difficulty, there is a steady increase in the
number of protein-RNA complex structures deposited in the protein data bank from 45 in
2001 to 180 in 2011 (non-redundant at 90% sequence identity or less) (1). Moreover,
hundreds of novel, unconventional, or moonlighting RBPs have been discovered (2–4).
Experimental discovery of new RBPs and determination of protein-RNA complex
structures, however, is costly and inefficient. There is a need for the development of highly
accurate bioinformatics tools for predicting RNA binding function and protein-RNA
complex structures.

Most methods developed for predicting RNA-binding proteins are based on machine-
learning methods that employ information of protein sequences and/or known protein
structures (5,6). Meanwhile, docking techniques for protein-RNA interactions have been
developed by using a scoring/energy function for protein-RNA interaction (7–10). Here, we
describe SPOT-Seq-RNA, a template-based technique that combines predictions of protein-
RNA complex structure and binding affinity (11). More specifically, SPOT-Seq-RNA
employs a template library of non-redundant protein-RNA complex structures and attempts
to match the query sequence to the protein structures in protein-RNA complexes by the fold
recognition technique SPARKS X (12). Significant matches will be employed to predict the
complex structures between a target sequence and template RNA as well as the binding
affinity of the complex.

In SPOT-Seq-RNA, structure prediction is performed by the latest version of our fold
recognition technique SPARKS X (12) which was among the best performing single
automatic servers in several critical assessment of structure prediction (CASP) meetings
(CASP 6 (13), CASP 7 (14) and CASP 9 (12)). SPARKS X is a multi-dimensional
probabilistic matching between sequence profiles generated from PSI-BLAST (15) for query
and template sequences and between structural features of a template and those predicted by
SPINE X (16–18) for a query sequence. Predicted structural features include secondary
structure (17), backbone torsion angles (16), and residue solvent accessibility (18). For
binding affinity prediction, we extracted a knowledge-based energy function, DRNA, from
protein-RNA complex structures (19) based on a distance-scaled finite ideal-gas reference
(DFIRE) state (20). The DFIRE reference state was found to be one of the best reference
states for deriving knowledge-based energy functions for folding and binding studies (21,
22). While many template-based structure prediction methods and knowledge-based energy
functions for protein-RNA interactions exist, the coupling between fold recognition by
SPARKS X and binding affinity prediction by DRNA in SPOT-Seq-RNA provides the first
dedicated high-resolution function prediction for RBPs.

SPOT-Seq-RNA was cross-validated by leave-homology-out and independently tested by
several datasets (11). It was found to significantly improve over a sequence-to-profile search
technique, PSI-BLAST (15), and a profile-to-profile search technique, HHPRED (23), in

Yang et al. Page 2

Methods Mol Biol. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



discriminating RBPs from non-RBPs. It was also shown to be far more sensitive and
accurate in detecting RBPs than machine-learning based techniques, while having similar
accuracy to the best machine-learning techniques for RNA-binding site prediction (24).
More importantly, SPOT-Seq-RNA can provide a reasonably accurate prediction of protein-
RNA complex structure (77% predicted structures having root-mean-squared distance of 4Å
or less) (11). More recently, SPOT-Seq-RNA was applied to the human genome and
independently tested by mRNA-binding proteins from a proteomic experiment (25).
Discovery of more than 2000 novel RBPs in the human genome and validation of the results
in messenger-RBPs by the proteomic experiment (4) confirm the usefulness of SPOT-Seq-
RNA in predicting novel RNA-binding proteins beyond simple sequence homology and
modeling of their complex structures.

2 Materials
2.1 Software

A software package is downloadable from our homepage with a shortcut link: http://
sparks.informatics.iupui.edu/yueyang/download/index.php?Download=SPOT-Seq-RNA.tbz.
This package as shown in Fig. 1 integrates one external program PSI-BLAST (15) and three
in-house-built programs: SPINE X (structural property prediction) (16,17), SPARKS X
(template-based structure prediction) (12), and DRNA (binding affinity prediction) (19).

1. An external program, PSI-BLAST, and protein NR database (15) are employed to
generate a position-specific scoring matrix (PSSM) or sequence profile that is a
required input for programs SPINE X and SPARKS X (see Note 2 to skip this step
if a PSSM file is pre-calculated for the query sequence).

2. An in-house-made program, SPINE X (16–18), is applied to predict the secondary
structure, torsional angles (φ and ψ), and the solvent accessible surface area (ASA).
SPINE X is a neural-network predictor that couples secondary structure prediction
with predictions of solvent accessibility and backbone torsion angles in an iterative
manner. SPINE X was tested with a dataset of 2640 proteins and achieved an
82.0% accuracy in secondary structure prediction based on 10-fold cross validation.
SPINE X can also be downloaded separately from our homepage.

3. SPARKS X is a template-based structure-prediction program. The program is
employed to search for the best match between a query sequence and a template
structure in the template database of protein-RNA complex structures. The
statistically significant alignments from the best match (or matches) are utilized to
construct complex structure models between the query and RNA of the template.

4. DRNA scoring function is used to calculate binding affinity. DRNA is a statistical
energy function extracted from 174 protein-RNA complex structures with a
distance-scaled finite ideal-gas reference state (19). It predicts the binding affinity
based on the complex structure model between the query and template RNA.

2.2 Databases for RNA-binding proteins and non-RNA binding proteins
1. A prebuilt list of 1052 RNA-binding domains and chains and 5766 non-RNA

binding chains were prepared. The files for template structural profiles for both
RBPs and non-RBPs are located in the directory “TPL_input”. Here the database of
RBPs contains template proteins in complex with their binding RNAs while all

2The package requires PSSM from PSI-BLAST. If a pre-calculated PSSM was prepared, PSI-BLAST can be skipped to save time.
The user can choose to input a pre-calculated PSSM with option “-pssm” for the locally installed version.
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non-RBPs serve as background statistics to calculate Z-scores to measure the
significance of the matching template.

2. For RBPs the structural coordinates in PDB format were provided for model
building. The coordinate files contain 1052 protein chains/domains as well as 632
RNAs from respective protein-RNA complexes, stored in directories “domains”
and “RNA0”, respectively. Each protein file contains one chain or domain, while
RNA c

3. oordinate files contain all RNA chains in the protein complex. These protein
coordinate files are employed as the templates to build the structure model of the
query protein while the RNA coordinates will be directly copied (with the same
orientation as in the template complex structure) as the RNA conformation in the
complex structure model for the query protein.

3 Methods
To describe the automated prediction pipeline as shown in Fig. 1, we used a protein,
Bacillus halodurans RNase H catalytic domain mutant D132N (PDB id: chain B of 1zbi) as
an example. This protein is RNase H and belongs to a nucleotidyl transferase superfamily,
which includes transposase, retroviral integrase, Holliday junction resolvase, and RISC
nuclease Argonaute (26).

3.1 Input and PSSM generation
The only input required for SPOT-Seq-RNA is the query protein sequence in FASTA
format. Fig. 2A displays the input window for the web-based server that allows the cut-and-
paste of the protein sequence RNase H. File upload is also allowed. Only one sequence per
run is allowed for input. This sequence is subsequently passed to PSI-BLAST (15) to search
for homologous sequences of the query sequence and to generate the position-specific
substitution matrix (PSSM), which is constructed by three iterations of searching (E value
less than 0.001) against the non-redundant (NR) sequence database.

3.2 Structural profile preparation for SPARKS X
The PSSM file (either given or generated from PSI-BLAST) above is first employed by
SPINE X to predict protein structural properties, including secondary structure (in three
states), torsional angles (φ and ψ), and the solvent accessible area (ASA), along with their
respective confidence scores. SPINE X is a neural-network predictor that utilizes a Perl
script file to automatically call five separate predictors that were compiled by the Intel
Fortran compiler. Structural properties predicted by SPINE X together with PSSM are stored
in a profile file (pro.inp) as input for SPARKS X. In this profile file, the first line indicates
the residue number (NRES) of the query protein. The second line contains the sequence in
one-letter code. The next 20 lines are the inverse value of PSSM for 20 amino acid residue
types at all sequence positions (20×NRES). These 20 lines are arranged alphabetically based
on residue names (ACDE...Y). Here, the inverse value of PSSM is used to reduce the
number of characters in the file as we noticed that most values in the PSSM are negative.
After that, another 20 lines are the probability of 20 amino acids at each sequence position.
Then, the next four lines are predicted probabilities of secondary structures (three states of
coil, helix, and sheet, CHE), φ, ψ, and relative ASA. These structural properties are followed
by predicted confidence scores for secondary structure, φ and ψ, respectively. In the current
version, the confidence score for ASA is pre-calculated based on amino-acid residue types.
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3.3 Scanning over all templates by SPARKS X
The above sequence and structural profiles for the query sequence are employed by
SPARKS X to compare with corresponding profiles of all template structures in the template
library (see 2.2). The raw profile-profile alignment score in SPARKS X is calculated as
follows:

(1)

where wk are weight parameters and Sshift is a constant. The first term in Eq. (1) is the
profile-profile comparison between the sequence profile from the query sequence and that
from the template sequence, where F and M are sequence-derived frequency profile and log
odd profile, respectively. The second term is the energy term based on probabilistic
matching between predicted secondary structures of the query and actual secondary

structures of the template: , where

is the probability of the predicted secondary structure SSq by SPINE X
with confidence score CSS,q for a native secondary structure SSt. Similarly, the next three
terms are the energy terms based on probabilistic matching between other structural

properties: , where P(Δk|Ck,q) is the probability of the
difference Δk between the predicted properties and corresponding native values with a
confidence score of Ck,q. The reference probability P0(Δk|Ck,q) is obtained by comparing the
predicted values to all native values in a dataset as described below. There are a total of
three terms with k = 2 for real-value φ value, k = 3 for real-value ψ value, and k = 4 for real-
value solvent accessibility. All energy terms were obtained from a non-redundant data set of
2479 proteins with length less than 500 amino acids from the original SPINE database [25%
sequence identity cutoff, X-ray resolution of 3Å or higher, and no unknown structural
regions] (27).

The raw alignment scores optimized by dynamic programming techniques for all templates
are saved in the file called “pro.out”, in which each line contains the template name, the raw
alignment score, the total alignment length including gaps, the number of gaps in two
termini, the start and end positions of the query chain segment with effective alignment, and
the number of exactly matched residue types in the alignment. The number of gaps can be
positive (gaps in the query protein) or negative (gaps in the template protein). The sequence
position begins counting from zero.

3.4 Selecting statistically significant matching templates
From the alignment raw score, the Z-score was calculated based on a normalized score Snorm
= Sraw/Lα using the standard definition: Z-score = (Snorm − Save)/ΔS, where Sraw and L are
the raw alignment score and alignment length (i.e. the second and third column in the
pro.out file); α is 0.75; and Save and ΔS are the average value and standard error of the
normalized score on all templates. A higher Z-score indicates a highly significant matching
template from the average templates. Based on our previous statistics, templates with Z-
scores of six or higher have 90% probability of having the same structural fold as the query
protein.
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By default, the program will record five or more templates with the highest Z-score or Z-
scores greater than eight in file “pro.zs1”. In the file, the first column is the calculated Z-
score followed by the query protein name and raw alignment scores that are output by
SPARKS X for each template. These templates will be subjected to model building and
binding affinity evaluation.

3.5 Building and evaluating protein-RNA complex models
All top matching templates in the file “pro.zs1” are used to build complex models. The
model structures are built based on the alignment between the query and template sequences
(see Note 5). The coordinates of the main-chain and Cβ atoms (if present) of residues in the
template will be copied to the corresponding aligned residues in the query protein. If the Cβ
of a residue except GLY is missing in the template, the Cβ atom will be built based on the
coordinates of the three main-chain heavy atoms (N, Cα, C). For those query residues not
aligned to template residues, they will be ignored. The final protein model copies the RNA
structure from the template to produce the complex structure model. All complex structure
models are saved in separate files in PDB format (e.g. a complex built using template
“2qk9A” will be saved in file “pro_2qk9A.pdb”).

From these complex structure models, the binding free energy will be evaluated by using the
program DRNA. The pairwise distance-dependent energy between an atom of an amino acid
residue and an atom in a RNA base is

where α=1.61, β=0.5, rcut is the interaction cutoff distance (15Å), and the volume-fraction

factor  is the number of
observed pairs of atoms i and j at a given distance r from a database of protein-RNA
complex structures. We employed residue/base-specific atom types with a total of 253 atom
types (167 for protein and 86 for RNA). We also set the factor η arbitrarily to 0.01 to control
the magnitude of the energy score. The statistics of Nobs(i,j,r) is saved in the file
“dfire_RNA”. The binding free energy of a complex structure model is obtained by
summing the interactions between any RNA atoms and protein atoms of main-chain atoms
and Cβ only with a distance less than 6.0Å. The calculated binding free energy together with
the Z-score for all complexes is recorded in the file “pro.zs_en”.

3.6 Detecting RNA-binding proteins
The query protein is an RNA binding protein when both Z-score and energy thresholds are
satisfied for at least one complex structure model. The final output file, “pro.result”,
contains the template name, Z-score and the estimated binding free energy of the protein-
RNA complex structure. The complex structure is then further employed to predict residues
that interact with RNA (binding residue prediction). The binding residues were defined if
any atom of the residue is less than 4.5Å to any RNA atoms. For a balance of coverage and
accuracy of the prediction, we have set a threshold of 8.04 and −0.565 for Z-score and
binding free energy, respectively. These thresholds were obtained in our benchmark studies

5SPARKS X has the option “-print level” to control different levels of outputs. The default level (0) only outputs the alignment score
and length information. This will reduce the size of the output file in the template scanning step. A level equal to or greater than two
will also print out the alignment between query and templates.

Yang et al. Page 6

Methods Mol Biol. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



by maximizing the Matthews correlation coefficient (MCC) for two-state prediction of
RNA-binding proteins (11).

If not a single template is found to satisfy both thresholds, the query protein will be
considered as a non-RNA binding protein. However, we continue to present the top five
matched templates and predicted complex structure models because low sensitivity (about
46%) may incorrectly predict some RBPs as non-RBPs despite correct prediction of
complex structures. Users may have additional biological information to judge correctness
of the complex structure model and function prediction (see Note 4).

3.7 SPOT-Seq-RNA input/output
Fig. 2 shows the input and output windows of the SPOT-Seq-RNA server at http://
sparks.informatics.iupui.edu/server/SPOT-Seq-RNA/. This output is based on the query
protein Bacillus halodurans RNase H. There are four matching templates within both Z-
score and binding thresholds. Thus, this protein is predicted as an RNA-binding protein.
Predicted complex structural models are listed according to respective templates. After
filtering homologous templates, 2qk9A (17.6% sequence identity to the query sequence) was
selected to demonstrate the overall accuracy of prediction. Fig. 3 displays the structurally
aligned predicted and native complex structures by SPalign (28). One hundred and seven
residues out of 136 residues (79%) in the query protein are aligned with its actual native
structure with RMSD 2.8Å. In addition to the four templates within the thresholds, there is a
template “1hysA0” that satisfied the Z-score but not the binding threshold. This illustrates
the possibility of false negatives despite accurate structure prediction (see Note 4).
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Figure 1.
The flow chart of SPOT-Seq-RNA.
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Figure 2.
The input and result windows of the SPOT-Seq-RNA server for the query protein Bacillus
halodurans RNase H (PDBID: 1zbiB).
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Figure 3.
The predicted model based on template 2qk9A for protein Bacillus halodurans RNase H
(colored in green) is structurally aligned by SPalign to the native structure (colored in
yellow). One complementary DNA chain has been removed.
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