59 research outputs found

    Psychiatric comorbidities in Asperger syndrome are related with polygenic overlap and differ from other Autism subtypes

    Get PDF
    There is great phenotypic heterogeneity within autism spectrum disorders (ASD), which has led to question their classification into a single diagnostic category. The study of the common genetic variation in ASD has suggested a greater contribution of other psychiatric conditions in Asperger syndrome (AS) than in the rest of the DSM-IV ASD subtypes (Non_AS). Here, using available genetic data from previously performed genome-wide association studies (GWAS), we aimed to study the genetic overlap between five of the most related disorders (schizophrenia (SCZ), major depression disorder (MDD), attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorders (OCD) and anxiety (ANX)), and AS, comparing it with the overlap in Non_AS subtypes. A Spanish cohort of autism trios (N = 371) was exome sequenced as part of the Autism Sequencing Consortium (ASC) and 241 trios were extensively characterized to be diagnosed with AS following DSM-IV and Gillberg's criteria (N = 39) or not (N = 202). Following exome imputation, polygenic risk scores (PRS) were calculated for ASD, SCZ, ADHD, MDD, ANX, and OCD (from available summary data from Psychiatric Genomic Consortium (PGC) repository) in the Spanish trios' cohort. By using polygenic transmission disequilibrium test (pTDT), we reported that risk for SCZ (Pscz = 0.008, corrected-PSCZ = 0.0409), ADHD (PADHD = 0.021, corrected-PADHD = 0.0301), and MDD (PMDD = 0.039, corrected-PMDD = 0.0501) is over-transmitted to children with AS but not to Non_AS. Indeed, agnostic clustering procedure with deviation values from pTDT tests suggested two differentiated clusters of subjects, one of which is significantly enriched in AS (P = 0.025). Subsequent analysis with S-Predixcan, a recently developed software to predict gene expression from genotype data, revealed a clear pattern of correlation between cortical gene expression in ADHD and AS (P < 0.001) and a similar strong correlation pattern between MDD and AS, but also extendable to another non-brain tissue such as lung (P < 0.001). Altogether, these results support the idea of AS being qualitatively distinct from Non_AS autism and consistently evidence the genetic overlap between AS and ADHD, MDD, or SCZ

    Emotion recognition profiles in clusters of youth based on levels of callous-unemotional traits and reactive and proactive aggression

    Full text link
    Youth with disruptive behavior showing high callous-unemotional (CU) traits and proactive aggression are often assumed to exhibit distinct impairments in emotion recognition from those showing mainly reactive aggression. Yet, reactive and proactive aggression and CU traits may co-occur to varying degrees across individuals. We aimed to investigate emotion recognition in more homogeneous clusters based on these three dimensions. In a sample of 243 youth (149 with disruptive behavior problems and 94 controls) aged 8-18 years, we used model-based clustering on self-report measures of CU traits and reactive and proactive aggression and compared the resulting clusters on emotion recognition (accuracy and response bias) and working memory. In addition to a Low and Low-Moderate symptom cluster, we identified two high CU clusters. The CU-Reactive cluster showed high reactive and low-to-medium proactive aggression; the CU-Mixed cluster showed high reactive and proactive aggression. Both CU clusters showed impaired fear recognition and working memory, whereas the CU-Reactive cluster also showed impaired recognition of disgust and sadness, partly explained by poor working memory, as well as a response bias for anger and happiness. Our results confirm the importance of CU traits as a core dimension along which youth with disruptive behavior may be characterized, yet challenge the view that high CU traits are closely linked to high proactive aggression per se. Notably, distinct neurocognitive processes may play a role in youth with high CU traits and reactive aggression with lower versus higher proactive aggression. Keywords: Callous-unemotional traits; Disruptive behavior problems; Emotion recognition; Proactive aggression; Reactive aggressio

    Executive functioning and emotion recognition in youth with oppositional defiant disorder and/or conduct disorder

    Get PDF
    Objectives: Executive functioning and emotion recognition may be impaired in disruptive youth, yet findings in oppositional defiant disorder (ODD) and conduct disorder (CD) are inconsistent. We examined these functions related to ODD and CD, accounting for comorbid attention-deficit/hyperactivity disorder (ADHD) and internalising symptoms.Methods: We compared executive functioning (visual working memory, visual attention, inhibitory control) and emotion recognition between youth (8-18 years old, 123 boys, 55 girls) with ODD (n = 44) or CD (with/without ODD, n = 48), and healthy controls (n = 86). We also related ODD, CD, and ADHD symptom counts and internalising symptomatology to all outcome measures, as well as executive functioning to emotion recognition.Results: Visual working memory and inhibitory control were impaired in the ODD and CD groups versus healthy controls. Anger, disgust, fear, happiness, and sadness recognition were impaired in the CD group; only anger recognition was impaired in the ODD group. Deficits were not explained by comorbid ADHD or internalising symptoms. Visual working memory was associated with recognition of all basic emotions.Conclusions: Our findings challenge the view that neuropsychological impairments in youth with ODD/CD are driven by comorbid ADHD and suggest possible distinct neurocognitive mechanisms in CD versus ODD

    Different Whole-Brain Functional Connectivity Correlates of Reactive-Proactive Aggression and Callous-Unemotional Traits in Children and Adolescents with Disruptive Behaviors

    Full text link
    Background: Disruptive behavior in children and adolescents can manifest as reactive aggression and proactive aggression and is modulated by callous-unemotional traits and other comorbidities. Neural correlates of these aggression dimensions or subtypes and comorbid symptoms remain largely unknown. This multi-center study investigated the relationship between resting state functional connectivity (rsFC) and aggression subtypes considering comorbidities. Methods: The large sample of children and adolescents aged 8–18 years (n = 207; mean age = 13.30 ± 2.60 years, 150 males) included 118 cases with disruptive behavior (80 with Oppositional Defiant Disorder and/or Conduct Disorder) and 89 controls. Attention-deficit/hyperactivity disorder (ADHD) and anxiety symptom scores were analyzed as covariates when assessing group differences and dimensional aggression effects on hypothesis-free global and local voxel-to-voxel whole-brain rsFC based on functional magnetic resonance imaging at 3 Tesla. Results: Compared to controls, the cases demonstrated altered rsFC in frontal areas, when anxiety but not ADHD symptoms were controlled. For cases, reactive and proactive aggression scores related to global and local rsFC in the central gyrus and precuneus, regions linked to aggression-related impairments. Callous-unemotional trait severity was correlated with ICC in the inferior and middle temporal regions implicated in empathy, emotion, and reward processing. Most observed aggression subtype-specific patterns could only be identified when ADHD and anxiety were controlled for. Conclusions: This study clarifies that hypothesis-free brain connectivity measures can disentangle distinct though overlapping dimensions of aggression in youths. Moreover, our results highlight the importance of considering comorbid symptoms to detect aggression-related rsFC alterations in youths

    Specific cortical and subcortical alterations for reactive and proactive aggression in children and adolescents with disruptive behavior.

    Get PDF
    Maladaptive aggression, as present in conduct disorder (CD) and, to a lesser extent, oppositional defiant disorder (ODD), has been associated with structural alterations in various brain regions, such as ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), amygdala, insula and ventral striatum. Although aggression can be subdivided into reactive and proactive subtypes, no neuroimaging studies have yet investigated if any structural brain alterations are associated with either of the subtypes specifically. Here we investigated associations between aggression subtypes, CU traits and ADHD symptoms in predefined regions of interest. T1-weighted magnetic resonance images were acquired from 158 children and adolescents with disruptive behavior (ODD/CD) and 96 controls in a multi-center study (aged 8-18). Aggression subtypes were assessed by questionnaires filled in by participants and their parents. Cortical volume and subcortical volumes and shape were determined using Freesurfer and the FMRIB integrated registration and segmentation tool. Associations between volumes and continuous measures of aggression were established using multilevel linear mixed effects models. Proactive aggression was negatively associated with amygdala volume (b = -10.7, p = 0.02), while reactive aggression was negatively associated with insula volume (b = -21.7, p = 0.01). No associations were found with CU traits or ADHD symptomatology. Classical group comparison showed that children and adolescents with disruptive behavior had smaller volumes than controls in (bilateral) vmPFC (p = 0.003) with modest effect size and a reduced shape in the anterior part of the left ventral striatum (p = 0.005). Our study showed negative associations between reactive aggression and volumes in a region involved in threat responsivity and between proactive aggression and a region linked to empathy. This provides evidence for aggression subtype-specific alterations in brain structure which may provide useful insights for clinical practice

    Aggression subtypes relate to distinct resting state functional connectivity in children and adolescents with disruptive behavior

    Get PDF
    There is increasing evidence for altered brain resting state functional connectivity in adolescents with disruptive behavior. While a considerable body of behavioral research points to differences between reactive and proactive aggression, it remains unknown whether these two subtypes have dissociable effects on connectivity. Additionally, callous-unemotional traits are important specifiers in subtyping aggressive behavior along the affective dimension. Accordingly, we examined associations between two aggression subtypes along with callous-unemotional traits using a seed-to-voxel approach. Six functionally relevant seeds were selected to probe the salience and the default mode network, based on their presumed role in aggression. The resting state sequence was acquired from 207 children and adolescents of both sexes [mean age (standard deviation) = 13.30 (2.60); range = 8.02-18.35] as part of a Europe-based multi-center study. One hundred eighteen individuals exhibiting disruptive behavior (conduct disorder/oppositional defiant disorder) with varying comorbid attention-deficit/hyperactivity disorder (ADHD) symptoms were studied, together with 89 healthy controls. Proactive aggression was associated with increased left amygdala-precuneus coupling, while reactive aggression related to hyper-connectivities of the posterior cingulate cortex (PCC) to the parahippocampus, the left amygdala to the precuneus and to hypo-connectivity between the right anterior insula and the nucleus caudate. Callous-unemotional traits were linked to distinct hyper-connectivities to frontal, parietal, and cingulate areas. Additionally, compared to controls, cases demonstrated reduced connectivity of the PCC and left anterior insula to left frontal areas, the latter only when controlling for ADHD scores. Taken together, this study revealed aggression-subtype-specific patterns involving areas associated with emotion, empathy, morality, and cognitive control

    Importance of the Support Properties for Immobilization or Purification of Enzymes

    Get PDF
    Immobilization and purification of enzymes are usual requirements for their industrial use. Both purification and immobilization have a common factor: they use a solid activated support. Using a support for enzyme purification means having mild conditions for enzyme release and a selective enzyme–support interaction is interesting. When using a support for immobilization, however, enzyme desorption is a problem. The improvement of enzyme features through immobilization is a usual objective (e.g., stability, selectivity). Thus, a support designed for enzyme purification and a support designed for enzyme immobilization may differ significantly. In this review, we will focus our attention on the requirements of a support surface to produce the desired objectives. The ideal physical properties of the matrix, the properties of the introduced reactive groups, the best surface activation degree to reach the desired objective, and the properties of the reactive groups will be discussed.We gratefully recognize the support from the Spanish Government, CTQ2013-41507-R, Colciencia (Colombia) and CNPq (Brazil). The predoctoral fellowships for Mr dos Santos (CNPq, Brazil) are also recognized. Á. Berenguer-Murcia thanks the Spanish Ministerio de Ciencia e InnovaciĂ»n for a RamĂłn y Cajal fellowship (RyC-2009-03813)

    Viseće slike

    Get PDF
    Contains fulltext : 231781.pdf (Publisher’s version ) (Open Access)Reversal learning deficits following reward and punishment processing are observed across disruptive behaviors (DB) and attention-deficit/hyperactivity disorder (ADHD), and have been associated with callous-unemotional (CU) traits. However, it remains unknown to what extent these altered reinforcement sensitivities are linked to the co-occurrence of oppositional traits, ADHD symptoms, and CU traits. Reward and punishment sensitivity and perseverative behavior were therefore derived from a probabilistic reversal learning task to investigate reinforcement sensitivity in participants with DB (n=183, ODD=62, CD=10, combined=57, age-range 8-18), ADHD (n=144, age-range 11-28), and controls (n=191, age-range 8-26). The SNAP-IV and Conners rating scales were used to assess oppositional and ADHD traits. The Inventory of CU traits was used to assess CU traits. Decreased reward sensitivity was associated with ADHD symptom severity (p=0.018) if corrected for oppositional symptoms. ADHD symptomatology interacted with oppositional behavior on perseveration (p=0.019), with the former aggravating the effect of oppositional behavior on perseveration and vice versa. Within a pooled sample, reversal learning alterations were associated with the severity of ADHD symptoms, underpinned by hyposensitivity to reward and increased perseveration. These results show ADHD traits, as opposed to oppositional behavior and CU traits, is associated with decreased reward-based learning in adolescents and adults.01 april 202

    Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder

    Get PDF
    We systematically analyzed postzygotic mutations (PZMs) in whole-exome sequences from the largest collection of trios (5,947) with autism spectrum disorder (ASD) available, including 282 unpublished trios, and performed resequencing using multiple independent technologies. We identified 7.5% of de novo mutations as PZMs, 83.3% of which were not described in previous studies. Damaging, nonsynonymous PZMs within critical exons of prenatally expressed genes were more common in ASD probands than controls (P < 1 Ã 10-6), and genes carrying these PZMs were enriched for expression in the amygdala (P = 5.4 Ã 10-3). Two genes (KLF16 and MSANTD2) were significantly enriched for PZMs genome-wide, and other PZMs involved genes (SCN2A, HNRNPU and SMARCA4) whose mutation is known to cause ASD or other neurodevelopmental disorders. PZMs constitute a significant proportion of de novo mutations and contribute importantly to ASD risk
    • 

    corecore