175 research outputs found

    Possible techniques for optical measurement of temperature and concentration profiles in a supersonic ramjet

    Get PDF
    Optical measurement techniques of temperature and concentration profiles in supersonic ramje

    The interstellar C18O/C17O ratio in the solar neighbourhood: The rho Oph cloud

    Full text link
    Observations of up to ten carbon monoxide (CO and isotopomers) transitions are presented to study the interstellar C18O/C17O ratio towards 21 positions in the nearby (d~140pc) low-mass star forming cloud rho Oph. A map of the C18O J=1-0 distribution of parts of the cloud is also shown. An average 12C18O/12C17O isotopomeric ratio of 4.11 +/- 0.14, reflecting the 18O/17O isotope ratio, is derived from Large Velocity Gradient (LVG) calculations. From LTE column densities we derive a ratio of 4.17 +/-0.26. These calculations also show that the kinetic temperature decreases from about 30 K in the cloud envelope to about 10 K in the cloud cores. This decrease is accompanied by an increase of the average molecular hydrogen density from 10^4 cm-3 to >10^5 cm-3. Towards some lines of sight C18O optical depths reach values of order unity.Comment: 13 pages, 9 figures; accepted for publication in A&

    All-sky convolution for polarimetry experiments

    Get PDF
    We discuss all-sky convolution of the instrument beam with the sky signal in polarimetry experiments, such as the Planck mission which will map the temperature anisotropy and polarization of the cosmic microwave background (CMB). To account properly for stray light (from e.g. the galaxy, sun, and planets) in the far side-lobes of such an experiment, it is necessary to perform the beam convolution over the full sky. We discuss this process in multipole space for an arbitrary beam response, fully including the effects of beam asymmetry and cross-polarization. The form of the convolution in multipole space is such that the Wandelt-Gorski fast technique for all-sky convolution of scalar signals (e.g. temperature) can be applied with little modification. We further show that for the special case of a pure co-polarized, axisymmetric beam the effect of the convolution can be described by spin-weighted window functions. In the limits of a small angle beam and large Legendre multipoles, the spin-weight 2 window function for the linear polarization reduces to the usual scalar window function used in previous analyses of beam effects in CMB polarimetry experiments. While we focus on the example of polarimetry experiments in the context of CMB studies, we emphasise that the formalism we develop is applicable to anisotropic filtering of arbitrary tensor fields on the sphere.Comment: 8 pages, 1 figure; Minor changes to match version accepted by Phys. Rev.

    Galactic interstellar 18O/17O ratios - a radial gradient?

    Full text link
    (Abridged) Our aim is to determine 18O/17O abundance ratios across the entire Galaxy. These provide a measure of the amount of enrichment by high-mass versus intermediate-mass stars. Such ratios, derived from the C18O and C17O J=1-0 lines alone, may be affected by systematic errors. Therefore, the C18O and C17O (1-0), (2-1), and (3-2), as well as the 13CO (1-0) and (2-1) lines, were observed towards 18 prominent galactic targets (a total of 25 positions). The combined dataset was analysed with an LVG model, accounting for optical depth effects. The data cover galactocentric radii R between 0.1 and 16.9 kpc (solar circle at 8.5 kpc). Near the centre of the Galaxy, 18O/17O = 2.88 +/- 0.11. For the galactic disc out to an R of ca. 10 kpc, 18O/17O = 4.16 +/- 0.09. At ca. R = 16.5 kpc, 18O/17O = 5.03 +/- 0.46. Assuming that 18O is synthesised predominantly in high-mass stars (M > 8 Msun), while C17O is mainly a product of lower-mass stars, the ratio from the inner Galaxy indicates a dominance of CNO-hydrogen burning products that is also apparent in the C- and N-isotope ratios. The high 18O/17O value of the solar system (5.5) relative to that of the ambient ISM suggests contamination by nearby high-mass stars during its formation. High values in the metal-poor environment of the outer Galaxy are not matched by the low values observed towards the even more metal-poor LMC. Apparently, the outer Galaxy cannot be considered as an intermediate environment between the solar neighbourhood and the ISM of small metal-poor galaxies. The apparent 18O/17O gradient along the galactic disc and the discrepancy between outer disc and LMC isotope ratios may be explained by different ages of the respective stellar populations.Comment: Accepted by Astron. & Astroph.; 10 pages + 4 pages on-line material (figs

    Origin and evolution of the light nuclides

    Get PDF
    After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, He-3, He-4, Li-6, Li-7, Be-9, B-10 and B-11. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of He-3 abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained quasi-constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed "Spite-plateau" in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early ``Li-6 plateau'', which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.Comment: 18 pages, 9 figs. Invited Review in "Symposium on the Composition of Matter", honoring Johannes Geiss on the occasion of his 80th birthday (Grindelwald, Switzerland, Sept. 2006), to be published in Space Science Series of ISS

    Skewness in the Cosmic Microwave Background Anisotropy from Inflationary Gravity Wave Background

    Get PDF
    In the context of inflationary scenarios, the observed large angle anisotropy of the Cosmic Microwave Background (CMB) temperature is believed to probe the primordial metric perturbations from inflation. Although the perturbations from inflation are expected to be gaussian random fields, there remains the possibility that nonlinear processes at later epochs induce ``secondary'' non-gaussian features in the corresponding CMB anisotropy maps. The non-gaussianity induced by nonlinear gravitational instability of scalar (density) perturbations has been investigated in existing literature. In this paper, we highlight another source of non-gaussianity arising out of higher order scattering of CMB photons off the metric perturbations. We provide a simple and elegant formalism for deriving the CMB temperature fluctuations arising due to the Sachs-Wolfe effect beyond the linear order. In particular, we derive the expression for the second order CMB temperature fluctuations. The multiple scattering effect pointed out in this paper leads to the possibility that tensor metric perturbation, i.e., gravity waves (GW) which do not exhibit gravitational instability can still contribute to the skewness in the CMB anisotropy maps. We find that in a flat Ω=1\Omega =1 universe, the skewness in CMB contributed by gravity waves via multiple scattering effect is comparable to that from the gravitational instability of scalar perturbations for equal contribution of the gravity waves and scalar perturbations to the total rms CMB anisotropy. The secondary skewness is found to be smaller than the cosmic variance leading to the conclusion that inflationary scenarios do predict that the observed CMB anisotropy should be statistically consistent with a gaussian random distribution.Comment: 10 pages, Latex (uses revtex), 1 postscript figure included. Accepted for publication in Physical Review

    Polarization of the Microwave Background in Reionized Models

    Full text link
    I discuss the physics of polarization in models with early reionization. For sufficiently high optical depth to recombination the polarization is boosted on large scales while it is suppressed on smaller scales. New peaks appear in the polarization power spectrum, their position is proportional to the square root of the redshift at which the reionization occurs while their amplitude is proportional to the optical depth. For standard scenarios the rms degree of linear polarization as measured with a 7 degree FWHM antenna (like the one of the Brown University experiment) is 1.6μK1.6\mu K, 1.2μK1.2 \mu K, 4.8×102μK4.8\times 10^{-2} \mu K for an optical depth of 1, 0.5 or 0 respectively. For a 1 degree FWHM antenna this same models give 2.7μK2.7 \mu K , 1.8μK1.8 \mu K and 0.77μK0.77 \mu K. Detailed measurement of polarization on large angular scales could provide an accurate determination of the epoch of reionization, which cannot be obtained from temperature measurements alone.Comment: 19 pages, 12 figures, Revised to match PRD accepeted version. Improved COBE normaliztion so some numerical results change slightl

    Water in massive star-forming regions: HIFI observations of W3 IRS5

    Get PDF
    We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-H17O 110-101, p-H18O 111-000, p-H2O 22 202-111, p-H2O 111-000, o-H2O 221-212, and o-H2O 212-101 lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 111-000 and o-H2O 212-101 lines show absorption from the cold material (T ~ 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T > 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10^{-4}) is needed to reproduce the o-H17O 110-101 and p-H18O 111-000 spectra in our models. We estimate water abundances of 10^{-8} to 10^{-9} in the outer parts of the envelope (T < 100 K). The possibility of two protostellar objects contributing to the emission is discussed.Comment: Accepted for publication in the A&A HIFI special issu

    Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories

    Get PDF
    We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon with the accompanying polarizations. We also include direct interactions among fluids and fields. The background FLRW model includes the general spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions solved separately in different gauge conditions we can naturally check the numerical accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.
    corecore