14 research outputs found

    Evidence for Increased Genetic Risk Load for Major Depression in Patients Assigned to Electroconvulsive Therapy

    Get PDF
    Electroconvulsive therapy (ECT) is the treatment of choice for severe and treatment-resistant depression; disorder severity and unfavorable treatment outcomes are shown to be influenced by an increased genetic burden for major depression (MD). Here, we tested whether ECT assignment and response/nonresponse are associated with an increased genetic burden for major depression (MD) using polygenic risk score (PRS), which summarize the contribution of diseaserelated common risk variants. Fifty-one psychiatric inpatients suffering from a major depressive episode underwent ECT. MD-PRS were calculated for these inpatients and a separate population-based sample (n = 3,547 healthy; n = 426 self-reported depression) based on summary statistics from the Psychiatric Genomics Consortium MDD-working group (Cases: n = 59,851; Controls: n = 113,154). MD-PRS explained a significant proportion of disease status between ECT patients and healthy controls (p = .022, R2 = 1.173%); patients showed higher MD-PRS. MD-PRS in population-based depression self-reporters were intermediate between ECT patients and controls (n.s.). Significant associations between MD-PRS and ECT response (50% reduction in Hamilton depression rating scale scores) were not observed. Our findings indicate that ECT cohorts show an increased genetic burden for MD and are consistent with the hypothesis that treatment-resistant MD patients represent a subgroup with an increased genetic risk for MD. Larger samples are needed to better substantiate these findings

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder

    No full text
    Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits

    Genetic association of major depression with a typical features and obesity-related immunometabolic dysregulations

    No full text
    © 2017 American Medical Association. All rights reserved.IMPORTANCE The association between major depressive disorder (MDD) and obesitymay stem from shared immunometabolic mechanisms particularly evident in MDD with atypical features, characterized by increased appetite and/or weight (A/W) during an active episode. OBJECTIVE To determine whether subgroups of patients with MDD stratified according to the A/W criterion had a different degree of genetic overlap with obesity-related traits (body mass index [BMI] and levels of C-reactive protein [CRP] and leptin). DESIGN, SETTING, AND PATIENTS This multicenter study assembled genome-wide genotypic and phenotypic measures from 14 data sets of the Psychiatric Genomics Consortium. Data sets were drawn from case-control, cohort, and population-based studies, including 26 628 participants with established psychiatric diagnoses and genome-wide genotype data. Data on BMI were available for 15 237 participants. Data were retrieved and analyzed from September 28, 2015, through May 20, 2017. MAIN OUTCOMES AND MEASURES Lifetime DSM-IV MDDwas diagnosed using structured diagnostic instruments. Patients with MDD were stratified into subgroups according to change in the DSM-IV A/W symptoms as decreased or increased. RESULTS Data included 11 837 participants with MDD and 14 791 control individuals, for a total of 26 628 participants (59.1% female and 40.9%male). Among participants with MDD, 5347 (45.2%) were classified in the decreased A/W and 1871 (15.8%) in the increased A/W subgroups. Common genetic variants explained approximately 10% of the heritability in the 2 subgroups. The increased A/W subgroup showed a strong and positive genetic correlation (SE) with BMI (0.53 [0.15]; P = 6.3 × 10-4), whereas the decreased A/W subgroup showed an inverse correlation (-0.28 [0.14]; P = .06). Furthermore, the decreased A/W subgroup had a higher polygenic risk for increased BMI (odds ratio [OR], 1.18; 95%CI, 1.12-1.25; P = 1.6 × 10-10) and levels of CRP (OR, 1.08; 95%CI, 1.02-1.13; P = 7.3 × 10-3) and leptin (OR, 1.09; 95%CI, 1.06-1.12; P = 1.7 × 10-3). CONCLUSIONS AND RELEVANCE The phenotypic associations between atypical depressive symptoms and obesity-related traits may arise from shared pathophysiologic mechanisms in patients with MDD. Development of treatments effectively targeting immunometabolic dysregulations may benefit patients with depression and obesity, both syndromes with important disability

    Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland

    No full text
    Stress is associated with poorer physical and mental health. To improve our understanding of this link, we performed genome-wide association studies (GWAS) of depressive symptoms and genome-wide by environment interaction studies (GWEIS) of depressive symptoms and stressful life events (SLE) in two UK population-based cohorts (Generation Scotland and UK Biobank). No SNP was individually significant in either GWAS, but gene-based tests identified six genes associated with depressive symptoms in UK Biobank (DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU; p < 2.77 x 10(-6)). Two SNPs with genome-wide significant GxE effects were identified by GWEIS in Generation Scotland: rs12789145 (53-kb downstream PIWIL4; p = 4.95 x 10(-9); total SLE) and rs17070072 (intronic to ZCCHC2; p = 1.46 x 10(-8); dependent SLE). A third locus upstream CYLC2 (rs12000047 and rs12005200, p < 2.00 x 10(-8); dependent SLE) when the joint effect of the SNP main and GxE effects was considered. GWEIS gene-based tests identified: MTNR1B with GxE effect with dependent SLE in Generation Scotland; and PHF2 with the joint effect in UK Biobank (p < 2.77 x 10(-6)). Polygenic risk scores (PRSs) analyses incorporating GxE effects improved the prediction of depressive symptom scores, when using weights derived from either the UK Biobank GWAS of depressive symptoms (p = 0.01) or the PGC GWAS of major depressive disorder (p = 5.91 x 10(-3)). Using an independent sample, PRS derived using GWEIS GxE effects provided evidence of shared aetiologies between depressive symptoms and schizotypal personality, heart disease and COPD. Further such studies are required and may result in improved treatments for depression and other stress-related conditions

    Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank

    Get PDF
    Depression is more frequent among individuals exposed to traumatic events.Both trauma exposure and depression are heritable. However, the relationship between these traits, including the role of genetic risk factors, is complex and poorly understood. When modelling trauma exposure as an environmental influence on depression, both gene-environment correlations and gene-environment interactions have been observed. The UK Biobank concurrently assessed Major Depressive Disorder (MDD) and self-reported lifetime exposure to traumatic events in 126,522 genotyped individuals of European ancestry. We contrasted genetic influences on MDD between individuals reporting and not reporting trauma exposure (final sample size range: 24,094-92,957). The SNP-based heritability of MDD was greater in participants reporting trauma exposure (24%) than in individuals not reporting trauma exposure taking into account the strong, positive genetic correlation observed between MDD and reported trauma exposure. The genetic correlation between MDD 15 and waist circumference was only significant in individuals reporting trauma exposure (rg = 0.24, p = 1.8x10-7 versus rg = -0.05, p = 0.39 in individuals not reporting trauma exposure, difference p = 2.3x10-4). Our results suggest that the genetic contribution to MDD is greater when additional risk factors are present, and that a complex relationship exists between reported trauma exposure, body composition, and MDD

    Association of Whole-Genome and NETRIN1 Signaling Pathway-Derived Polygenic Risk Scores for Major Depressive Disorder and White Matter Microstructure in the UK Biobank

    No full text
    BACKGROUND: Major depressive disorder is a clinically heterogeneous psychiatric disorder with a polygenic architecture. Genome-wide association studies have identified a number of risk-associated variants across the genome and have reported growing evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic variation within the NETRIN1 pathway may provide important routes for identification of disease mechanisms by focusing on a specific process, excluding heterogeneous risk-associated variation in other pathways. Here, we sought to investigate whether major depressive disorder polygenic risk scores derived from the NETRIN1 signaling pathway (NETRIN1-PRSs) and the whole genome, excluding NETRIN1 pathway genes (genonnic-PRSs), were associated with white matter microstructure

    Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder

    No full text
    Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits
    corecore